23,005 research outputs found

    Fuzzy A* for optimum Path Planning in a Large Maze

    Get PDF
     Traditional A* path planning, while guaranteeing the shortest path with an admissible heuristic, often employs conservative heuristic functions that neglect potential obstacles and map inaccuracies. This can lead to inefficient searches and increased memory usage in complex environments. To address this, machine learning methods have been explored to predict cost functions, reducing memory load while maintaining optimal solutions. However, these require extensive data collection and struggle in novel, intricate environments. We propose the Fuzzy A* algorithm, an enhancement of the classic A* method, incorporating a new determinant variable to adjust heuristic cost calculations. This adjustment modulates the scope of scanned vertices during searches, optimizing memory usage and computational efficiency. In our approach, unlike traditional A* heuristics that overlook environmental complexities, the Fuzzy A* employs a dynamic heuristic function. This function, leveraging fuzzy logic principles, adapts to varying levels of environmental complexity, allowing a more nuanced estimation of the path cost that considers potential obstructions and route feasibility. This adaptability contrasts with standard machine learning-based solutions, which, while effective in known environments, often falter in unfamiliar or highly complex settings due to their reliance on pre-existing datasets. Our experimental framework involved 100 maze-solving trials in diverse maze configurations, ranging from simple to highly intricate layouts, to evaluate the effectiveness of Fuzzy A*. We employed specific metrics such as path length, computational time, and memory usage for a comprehensive assessment. The results showcased that Fuzzy A* consistently found the shortest paths (99.96% success rate) and significantly reduced memory usage by 67% and 59% compared to Breadth-First-Search (BFS) and traditional A*, respectively. These findings underline the effectiveness of our modified heuristic approach in diverse and challenging environments, highlighting its potential for real-world pathfinding applications

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    An Autonomous Path Planning Method for Unmanned Aerial Vehicle based on A Tangent Intersection and Target Guidance Strategy

    Full text link
    Unmanned aerial vehicle (UAV) path planning enables UAVs to avoid obstacles and reach the target efficiently. To generate high-quality paths without obstacle collision for UAVs, this paper proposes a novel autonomous path planning algorithm based on a tangent intersection and target guidance strategy (APPATT). Guided by a target, the elliptic tangent graph method is used to generate two sub-paths, one of which is selected based on heuristic rules when confronting an obstacle. The UAV flies along the selected sub-path and repeatedly adjusts its flight path to avoid obstacles through this way until the collision-free path extends to the target. Considering the UAV kinematic constraints, the cubic B-spline curve is employed to smooth the waypoints for obtaining a feasible path. Compared with A*, PRM, RRT and VFH, the experimental results show that APPATT can generate the shortest collision-free path within 0.05 seconds for each instance under static environments. Moreover, compared with VFH and RRTRW, APPATT can generate satisfactory collision-free paths under uncertain environments in a nearly real-time manner. It is worth noting that APPATT has the capability of escaping from simple traps within a reasonable time

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO
    • …
    corecore