342 research outputs found

    Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

    Full text link
    The tasks of extracting (top-KK) Frequent Itemsets (FI's) and Association Rules (AR's) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI's and AR's are sufficient for most practical uses, and a number of recent works explored the application of sampling for fast discovery of approximate solutions to the problems. However, these works do not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets. In this work we circumvent this issue by applying the statistical concept of \emph{Vapnik-Chervonenkis (VC) dimension} to develop a novel technique for providing tight bounds on the sample size that guarantees approximation within user-specified parameters. Our technique applies both to absolute and to relative approximations of (top-KK) FI's and AR's. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset to be mined. The main theoretical contribution of this work is a proof that the VC-dimension of this range space is upper bounded by an easy-to-compute characteristic quantity of the dataset which we call \emph{d-index}, and is the maximum integer dd such that the dataset contains at least dd transactions of length at least dd such that no one of them is a superset of or equal to another. We show that this bound is strict for a large class of datasets.Comment: 19 pages, 7 figures. A shorter version of this paper appeared in the proceedings of ECML PKDD 201

    Parallel Implementation of Apriori Algorithm on Multicore System for Retail Market

    Get PDF
    Data Mining is a process of examining data and revealing the interesting patterns which are hidden. Association Rule Mining is a key technique of data mining. This technique works on finding intriguing relationships. Association rules are generated using Apriori Algorithm. The set of data includes a number of items which are called transactions. The work of this algorithm is to produce frequent itemsets from the transactional databases based upon the minimum support value. The outcome of an Apriori Algorithm is sets of association rules that provide us the frequency of items that are contained in sets of data which provide us the hidden pattern and general trends. This will be helpful for the retailer be familiar with the market and customer’s purchasing behavior. In pursuance of finding more valuable rules, our basic aim is to implement Apriori Algorithm using multithreading approach which can utilization our multicore processing system to improve the performance of an algorithm in a practical and efficient way to unearth more value information for the proper analysis of the business trends

    Post-processing of association rules.

    Get PDF
    In this paper, we situate and motivate the need for a post-processing phase to the association rule mining algorithm when plugged into the knowledge discovery in databases process. Major research effort has already been devoted to optimising the initially proposed mining algorithms. When it comes to effectively extrapolating the most interesting knowledge nuggets from the standard output of these algorithms, one is faced with an extreme challenge, since it is not uncommon to be confronted with a vast amount of association rules after running the algorithms. The sheer multitude of generated rules often clouds the perception of the interpreters. Rightful assessment of the usefulness of the generated output introduces the need to effectively deal with different forms of data redundancy and data being plainly uninteresting. In order to do so, we will give a tentative overview of some of the main post-processing tasks, taking into account the efforts that have already been reported in the literature.

    Encapsulation of Soft Computing Approaches within Itemset Mining a A Survey

    Get PDF
    Data Mining discovers patterns and trends by extracting knowledge from large databases. Soft Computing techniques such as fuzzy logic, neural networks, genetic algorithms, rough sets, etc. aims to reveal the tolerance for imprecision and uncertainty for achieving tractability, robustness and low-cost solutions. Fuzzy Logic and Rough sets are suitable for handling different types of uncertainty. Neural networks provide good learning and generalization. Genetic algorithms provide efficient search algorithms for selecting a model, from mixed media data. Data mining refers to information extraction while soft computing is used for information processing. For effective knowledge discovery from large databases, both Soft Computing and Data Mining can be merged. Association rule mining (ARM) and Itemset mining focus on finding most frequent item sets and corresponding association rules, extracting rare itemsets including temporal and fuzzy concepts in discovered patterns. This survey paper explores the usage of soft computing approaches in itemset utility mining

    Enhancing FP-Growth Performance Using Multi-threading based on Comparative Study

    Get PDF
    The time required for generating frequent patterns plays an important role in mining association rules, especially when there exist a large number of patterns and/or long patterns. Association rule mining has been focused as a major challenge within the field of data mining in research for over a decade. Although tremendous progress has been made, algorithms still need improvements since databases are growing larger and larger. In this research we present a performance comparison between two frequent pattern extraction algorithms implemented in Java, they are the Recursive Elimination (RElim) and FP-Growth, these algorithms are used in finding frequent itemsets in the transaction database. We found that FP-growth outperformed RElim in term of execution time. In this context, multithreading is used to enhance the time efficiency of FP-growth algorithm. The results showed that multithreaded FP-growth is more efficient compared to single threaded FP-growth
    • …
    corecore