69,529 research outputs found

    Computing American option price under regime switching with rationality parameter

    Full text link
    [EN] American put option pricing under regime switching is modelled by a system of coupled partial differential equations. The proposed model combines better the reality of the market by incorporating the regime switching jointly with the emotional behaviour of traders using the rationality parameter approach recently introduced by Tågholt Gad and Lund Petersen to cope with possible irrational exercise policy. The classical rational exercise is recovered as a limit case of the rational parameter. The resulting nonlinear system of PDEs is solved by a weighted finite difference method, also known as θ-method. In order to avoid the need of an iterative method for nonlinear system, the term with rationality parameter and the coupling term are treated explicitly. Next, the resulting linear system is solved by Thomas algorithm. Stability conditions for the numerical scheme are studied by using von Neumann approach. Numerical examples illustrate the efficiency and accuracy of the proposed method.This work has been partially supported by the European Union in the FP7- PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Ministerio de Economia y Competitividad Spanish grant MTM2013-41765-P. The fourth author has been partially supported by MINECO Spanish grant MTM2013-47800-C2-1-P and Xunta de Galicia grant CN2011/004.Company Rossi, R.; Egorova, V.; Jódar Sánchez, LA.; Vázquez, C. (2016). Computing American option price under regime switching with rationality parameter. Computers and Mathematics with Applications. 72:741-754. https://doi.org/10.1016/j.camwa.2016.05.026S7417547

    Positive Solutions of European Option Pricing with CGMYProcess Models Using Double Discretization Difference Schemes

    Full text link
    [EN] This paper deals with the numerical analysis of PIDE option pricing models with CGMY process using double discretization schemes. This approach assumes weaker hypotheses of the solution on the numerical boundary domain than other relevant papers. Positivity, stability, and consistency are studied. An explicit scheme is proposed after a suitable change of variables. Advantages of the proposed schemes are illustrated with appropriate examples.This work has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and by the Spanish M.E.Y.C. Grant DPI2010-20891-C02-01.Company Rossi, R.; Jódar Sánchez, LA.; El-Fakharany, M. (2013). Positive Solutions of European Option Pricing with CGMYProcess Models Using Double Discretization Difference Schemes. Abstract and Applied Analysis. 2013:1-12. https://doi.org/10.1155/2013/517480S1122013Kou, S. G. (2002). A Jump-Diffusion Model for Option Pricing. Management Science, 48(8), 1086-1101. doi:10.1287/mnsc.48.8.1086.166Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144. doi:10.1016/0304-405x(76)90022-2Barndorff-Nielsen, O. E. (1997). Processes of normal inverse Gaussian type. Finance and Stochastics, 2(1), 41-68. doi:10.1007/s007800050032Koponen, I. (1995). Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Physical Review E, 52(1), 1197-1199. doi:10.1103/physreve.52.1197Madan, D. B., & Milne, F. (1991). Option Pricing With V. G. Martingale Components. Mathematical Finance, 1(4), 39-55. doi:10.1111/j.1467-9965.1991.tb00018.xCarr, P., Geman, H., Madan, D. B., & Yor, M. (2002). The Fine Structure of Asset Returns: An Empirical Investigation. The Journal of Business, 75(2), 305-333. doi:10.1086/338705BOYARCHENKO, S. I., & LEVENDORSKIǏ, S. Z. (2000). OPTION PRICING FOR TRUNCATED LÉVY PROCESSES. International Journal of Theoretical and Applied Finance, 03(03), 549-552. doi:10.1142/s0219024900000541Matache *, A.-M., Nitsche, P.-A., & Schwab, C. (2005). Wavelet Galerkin pricing of American options on Lévy driven assets. Quantitative Finance, 5(4), 403-424. doi:10.1080/14697680500244478Poirot, J., & Tankov, P. (2007). Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes. Asia-Pacific Financial Markets, 13(4), 327-344. doi:10.1007/s10690-007-9048-7Fang, F., & Oosterlee, C. W. (2009). A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions. SIAM Journal on Scientific Computing, 31(2), 826-848. doi:10.1137/080718061Benhamou, E., Gobet, E., & Miri, M. (2009). Smart expansion and fast calibration for jump diffusions. Finance and Stochastics, 13(4), 563-589. doi:10.1007/s00780-009-0102-3Cont, R., & Voltchkova, E. (2005). A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models. SIAM Journal on Numerical Analysis, 43(4), 1596-1626. doi:10.1137/s0036142903436186Wang, I., Wan, J., & Forsyth, P. (2007). Robust numerical valuation of European and American options under the CGMY process. The Journal of Computational Finance, 10(4), 31-69. doi:10.21314/jcf.2007.169Casabán, M.-C., Company, R., Jódar, L., & Romero, J.-V. (2012). Double Discretization Difference Schemes for Partial Integrodifferential Option Pricing Jump Diffusion Models. Abstract and Applied Analysis, 2012, 1-20. doi:10.1155/2012/120358Andersen, L., & Andreasen, J. (2000). Review of Derivatives Research, 4(3), 231-262. doi:10.1023/a:1011354913068Almendral, A., & Oosterlee, C. W. (2007). Accurate Evaluation of European and American Options Under the CGMY Process. SIAM Journal on Scientific Computing, 29(1), 93-117. doi:10.1137/050637613Sachs, E. W., & Strauss, A. K. (2008). Efficient solution of a partial integro-differential equation in finance. Applied Numerical Mathematics, 58(11), 1687-1703. doi:10.1016/j.apnum.2007.11.002Salmi, S., & Toivanen, J. (2011). An iterative method for pricing American options under jump-diffusion models. Applied Numerical Mathematics, 61(7), 821-831. doi:10.1016/j.apnum.2011.02.002Toivanen, J. (2008). Numerical Valuation of European and American Options under Kou’s Jump-Diffusion Model. SIAM Journal on Scientific Computing, 30(4), 1949-1970. doi:10.1137/060674697Almendral, A., & Oosterlee, C. W. (2005). Numerical valuation of options with jumps in the underlying. Applied Numerical Mathematics, 53(1), 1-18. doi:10.1016/j.apnum.2004.08.037Lee, J., & Lee, Y. (2013). Tridiagonal implicit method to evaluate European and American options under infinite activity Lévy models. Journal of Computational and Applied Mathematics, 237(1), 234-243. doi:10.1016/j.cam.2012.07.028Madan, D. B., & Seneta, E. (1990). The Variance Gamma (V.G.) Model for Share Market Returns. The Journal of Business, 63(4), 511. doi:10.1086/296519Milgram, M. S. (1985). The generalized integro-exponential function. Mathematics of Computation, 44(170), 443-443. doi:10.1090/s0025-5718-1985-0777276-4Matache, A.-M., von Petersdorff, T., & Schwab, C. (2004). Fast deterministic pricing of options on Lévy driven assets. ESAIM: Mathematical Modelling and Numerical Analysis, 38(1), 37-71. doi:10.1051/m2an:2004003Kangro, R., & Nicolaides, R. (2000). Far Field Boundary Conditions for Black--Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368. doi:10.1137/s0036142999355921Madan, D. B., Carr, P. P., & Chang, E. C. (1998). The Variance Gamma Process and Option Pricing. Review of Finance, 2(1), 79-105. doi:10.1023/a:100970343153

    Pricing options and computing implied volatilities using neural networks

    Full text link
    This paper proposes a data-driven approach, by means of an Artificial Neural Network (ANN), to value financial options and to calculate implied volatilities with the aim of accelerating the corresponding numerical methods. With ANNs being universal function approximators, this method trains an optimized ANN on a data set generated by a sophisticated financial model, and runs the trained ANN as an agent of the original solver in a fast and efficient way. We test this approach on three different types of solvers, including the analytic solution for the Black-Scholes equation, the COS method for the Heston stochastic volatility model and Brent's iterative root-finding method for the calculation of implied volatilities. The numerical results show that the ANN solver can reduce the computing time significantly
    corecore