498 research outputs found

    A Novel Multicasting Scheme over Wireless LAN Systems by Using Relay

    Get PDF
    Abstract. We propose a novel multicast scheme that can provide qualityof-service (QoS) to multicast service over IEEE 802.11 wireless LANs by utilizing medium access control (MAC) layer relay. It is well known that IEEE 802.11 provides a physical layer multi-rate capability in response to different channel conditions, and hence packets may be delivered at a higher data rate through a relay node than through the direct link if the direct link has low quality and low data rate. We develop the distributed relay node selection algorithm and the relay channel selection algorithm. The effectiveness of proposed scheme is examined by numerical method and simulation. Simulations show that the proposed relayed multicast significantly improves throughput and delay performance

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Framework for Content Distribution over Wireless LANs

    Get PDF
    Wireless LAN (also called as Wi-Fi) is dominantly considered as the most pervasive technology for Intent access. Due to the low-cost of chipsets and support for high data rates, Wi-Fi has become a universal solution for ever-increasing application space which includes, video streaming, content delivery, emergency communication, vehicular communication and Internet-of-Things (IoT). Wireless LAN technology is defined by the IEEE 802.11 standard. The 802.11 standard has been amended several times over the last two decades, to incorporate the requirement of future applications. The 802.11 based Wi-Fi networks are infrastructure networks in which devices communicate through an access point. However, in 2010, Wi-Fi Alliance has released a specification to standardize direct communication in Wi-Fi networks. The technology is called Wi-Fi Direct. Wi-Fi Direct after 9 years of its release is still used for very basic services (connectivity, file transfer etc.), despite the potential to support a wide range of applications. The reason behind the limited inception of Wi-Fi Direct is some inherent shortcomings that limit its performance in dense networks. These include the issues related to topology design, such as non-optimal group formation, Group Owner selection problem, clustering in dense networks and coping with device mobility in dynamic networks. Furthermore, Wi-Fi networks also face challenges to meet the growing number of Wi Fi users. The next generation of Wi-Fi networks is characterized as ultra-dense networks where the topology changes frequently which directly affects the network performance. The dynamic nature of such networks challenges the operators to design and make optimum planifications. In this dissertation, we propose solutions to the aforementioned problems. We contributed to the existing Wi-Fi Direct technology by enhancing the group formation process. The proposed group formation scheme is backwards-compatible and incorporates role selection based on the device's capabilities to improve network performance. Optimum clustering scheme using mixed integer programming is proposed to design efficient topologies in fixed dense networks, which improves network throughput and reduces packet loss ratio. A novel architecture using Unmanned Aeriel Vehicles (UAVs) in Wi-Fi Direct networks is proposed for dynamic networks. In ultra-dense, highly dynamic topologies, we propose cognitive networks using machine-learning algorithms to predict the network changes ahead of time and self-configuring the network

    Improving Multicast Communications Over Wireless Mesh Networks

    Get PDF
    In wireless mesh networks (WMNs) the traditional approach to shortest path tree based multicasting is to cater for the needs of the poorest performingnode i.e. the maximum permitted multicast line rate is limited to the lowest line rate used by the individual Child nodes on a branch. In general, this meansfixing the line rate to its minimum value and fixing the transmit power to its maximum permitted value. This simplistic approach of applying a single multicast rate for all nodes in the multicast group results in a sub-optimal trade-off between the mean network throughput and coverage area that does not allow for high bandwidth multimedia applications to be supported. By relaxing this constraint and allowing multiple line rates to be used, the mean network throughput can be improved. This thesis presents two methods that aim to increase the mean network throughput through the use of multiple line rates by the forwarding nodes. This is achieved by identifying the Child nodes responsible for reducing the multicast group rate. The first method identifies specific locations for the placement of relay nodes which allows for higher multicast branch line rates to be used. The second method uses a power control algorithm to tune the transmit power to allow for higher multicast branch line rates. The use of power control also helps to reduce the interference caused to neighbouring nodes.Through extensive computer simulation it can be shown that these two methods can lead to a four-fold gain in the mean network throughput undertypical WMN operating conditions compared with the single line rate case

    Infrastructure dependent wireless multicast - the effect of spatial diversity and error correction

    Get PDF
    The use of multiple Access Points (APs) with one AP placed at the middle of a coverage area and the remaining placed at the edge may reduce the Packet Error Rate (PER) experienced by a group of multicast receivers. This paper shows that Spatial Diversity can augment the channel quality experienced especially by those nodes which are located farther from the Master AP, i.e. the AP at the middle, however this study also demonstrates the need for error correction scheme. The aim of this analysis is to propose a means of enhancing the infrastructure end of an IEEE 802.11n Wireless Local Area Network (WLAN), such that multicast data can be delivered reliably in order to guarantee that the received video has an adequate Peak Signal to Noise Ratio (PSNR), but with the constraint that the Medium Access Control (MAC) and the Physical (PHY) layer of the receivers are not modified, hence a legacy IEEE 802.11n node may join the multicast group and experience good Quality of Service.peer-reviewe
    corecore