2 research outputs found

    A Novel Isomap-SVR Soft Sensor Model and Its Application in Rotary Kiln Calcination Zone Temperature Prediction

    No full text
    Soft sensing technology has been proved to be an effective tool for the online estimation of unmeasured or variables that are difficult to directly measure. The performance of a soft sensor depends heavily on its convergence speed and generalization ability to a great extent. Based on this idea, we propose a new soft sensor model, Isomap-SVR. First, the sample data set is divided into training set and testing set by using self-organizing map (SOM) neural network to ensure the fairness and symmetry of data segmentation. Isometric feature mapping (Isomap) method is used for dimensionality reduction of the model input data, which could not only reduce the structure complexity of the proposed model but speed up learning speed, and then the Support Vector Machine Regression (SVR) is applied to the regression model. A novel bat algorithm based on Cauchy mutation and Lévy flight strategy is used to optimize parameters of Isomap and SVR to improve the accuracy of the proposed model. Finally, the model is applied to the prediction of the temperature of rotary kiln calcination zone, which is difficult to measure directly. The simulation results show that the proposed soft sensor modeling method has higher learning speed and better generalization ability. Compared with other algorithms, this algorithm has obvious advantages and is an effective modeling method

    AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives

    Get PDF
    In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings’ performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings’ management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings’ performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings
    corecore