141 research outputs found

    Moving Target Defense for Securing SCADA Communications

    Get PDF
    In this paper, we introduce a framework for building a secure and private peer to peer communication used in supervisory control and data acquisition networks with a novel Mobile IPv6-based moving target defense strategy. Our approach aids in combating remote cyber-attacks against peer hosts by thwarting any potential attacks at their reconnaissance stage. The IP address of each host is randomly changed at a certain interval creating a moving target to make it difficult for an attacker to find the host. At the same time, the peer host is updated through the use of the binding update procedure (standard Mobile IPv6 protocol). Compared with existing results that can incur significant packet-loss during address rotations, the proposed solution is loss-less. Improving privacy and anonymity for communicating hosts by removing permanent IP addresses from all packets is also one of the major contributions of this paper. Another contribution is preventing black hole attacks and bandwidth depletion DDoS attacks through the use of extra paths between the peer hosts. Recovering the communication after rebooting a host is also a new contribution of this paper. Lab-based simulation results are presented to demonstrate the performance of the method in action, including its overheads. The testbed experiments show zero packet-loss rate during handoff delay

    Intrusion Detection in SCADA Systems using Machine Learning Techniques

    Get PDF
    Modern Supervisory Control and Data Acquisition (SCADA) systems are essential for monitoring and managing electric power generation, transmission and distribution. In the age of the Internet of Things, SCADA has evolved into big, complex and distributed systems that are prone to conventional in addition to new threats. So as to detect intruders in a timely and efficient manner a real time detection mechanism, capable of dealing with a range of forms of attacks is highly salient. Such a mechanism has to be distributed, low cost, precise, reliable and secure, with a low communication overhead, thereby not interfering in the industrial system’s operation. In this commentary two distributed Intrusion Detection Systems (IDSs) which are able to detect attacks that occur in a SCADA system are proposed, both developed and evaluated for the purposes of the CockpitCI project. The CockpitCI project proposes an architecture based on real-time Perimeter Intrusion Detection System (PIDS), which provides the core cyber-analysis and detection capabilities, being responsible for continuously assessing and protecting the electronic security perimeter of each CI. Part of the PIDS that was developed for the purposes of the CockpitCI project, is the OCSVM module. During the duration of the project two novel OCSVM modules were developed and tested using datasets from a small-scale testbed that was created, providing the means to mimic a SCADA system operating both in normal conditions and under the influence of cyberattacks. The first method, namely K-OCSVM, can distinguish real from false alarms using the OCSVM method with default values for parameters ν and σ combined with a recursive K-means clustering method. The K-OCSVM is very different from all similar methods that required pre-selection of parameters with the use of cross-validation or other methods that ensemble outcomes of one class classifiers. Building on the K-OCSVM and trying to cope with the high requirements that were imposed from the CockpitCi project, both in terms of accuracy and time overhead, a second method, namely IT-OCSVM is presented. IT-OCSVM method is capable of performing outlier detection with high accuracy and low overhead within a temporal window, adequate for the nature of SCADA systems. The two presented methods are performing well under several attack scenarios. Having to balance between high accuracy, low false alarm rate, real time communication requirements and low overhead, under complex and usually persistent attack situations, a combination of several techniques is needed. Despite the range of intrusion detection activities, it has been proven that half of these have human error at their core. An increased empirical and theoretical research into human aspects of cyber security based on the volumes of human error related incidents can enhance cyber security capabilities of modern systems. In order to strengthen the security of SCADA systems, another solution is to deliver defence in depth by layering security controls so as to reduce the risk to the assets being protected

    APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System

    Get PDF
    The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge I-IoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    A holistic approach for measuring the survivability of SCADA systems

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are responsible for controlling and monitoring Industrial Control Systems (ICS) and Critical Infrastructure Systems (CIS) among others. Such systems are responsible to provide services our society relies on such as gas, electricity, and water distribution. They process our waste; manage our railways and our traffic. Nevertheless to say, they are vital for our society and any disruptions on such systems may produce from financial disasters to ultimately loss of lives. SCADA systems have evolved over the years, from standalone, proprietary solutions and closed networks into large-scale, highly distributed software systems operating over open networks such as the internet. In addition, the hardware and software utilised by SCADA systems is now, in most cases, based on COTS (Commercial Off-The-Shelf) solutions. As they evolved they became vulnerable to malicious attacks. Over the last few years there is a push from the computer security industry on adapting their security tools and techniques to address the security issues of SCADA systems. Such move is welcome however is not sufficient, otherwise successful malicious attacks on computer systems would be non-existent. We strongly believe that rather than trying to stop and detect every attack on SCADA systems it is imperative to focus on providing critical services in the presence of malicious attacks. Such motivation is similar with the concepts of survivability, a discipline integrates areas of computer science such as performance, security, fault-tolerance and reliability. In this thesis we present a new concept of survivability; Holistic survivability is an analysis framework suitable for a new era of data-driven networked systems. It extends the current view of survivability by incorporating service interdependencies as a key property and aspects of machine learning. The framework uses the formalism of probabilistic graphical models to quantify survivability and introduces new metrics and heuristics to learn and identify essential services automatically. Current definitions of survivability are often limited since they either apply performance as measurement metric or use security metrics without any survivability context. Holistic survivability addresses such issues by providing a flexible framework where performance and security metrics can be tailored to the context of survivability. In other words, by applying performance and security our work aims to support key survivability properties such as recognition and resistance. The models and metrics here introduced are applied to SCADA systems as such systems insecurity is one of the motivations of this work. We believe that the proposed work goes beyond the current status of survivability models. Holistic survivability is flexible enough to support the addition of other metrics and can be easily used with different models. Because it is based on a well-known formalism its definition and implementation are easy to grasp and to apply. Perhaps more importantly, this proposed work is aimed to a new era where data is being produced and consumed on a large-scale. Holistic survivability aims to be the catalyst to new models based on data that will provide better and more accurate insights on the survivability of systems
    • …
    corecore