2 research outputs found

    A Novel Improved Feature Extraction Technique for Ship-Radiated Noise Based on IITD and MDE

    No full text
    Ship-radiated noise signal has a lot of nonlinear, non-Gaussian, and nonstationary information characteristics, which can reflect the important signs of ship performance. This paper proposes a novel feature extraction technique for ship-radiated noise based on improved intrinsic time-scale decomposition (IITD) and multiscale dispersion entropy (MDE). The proposed feature extraction technique is named IITD-MDE. First, IITD is applied to decompose the ship-radiated noise signal into a series of intrinsic scale components (ISCs). Then, we select the ISC with the main information through the correlation analysis, and calculate the MDE value as feature vectors. Finally, the feature vectors are input into the support vector machine (SVM) for ship classification. The experimental results indicate that the recognition rate of the proposed technique reaches 86% accuracy. Therefore, compared with the other feature extraction methods, the proposed method provides a new solution for classifying different types of ships effectively

    Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    Get PDF
    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth
    corecore