102 research outputs found

    Multi-Cell Uplink Radio Resource Management. A LTE Case Study

    Get PDF

    Cross-layer hybrid automatic repeat request error control with turbo processing for wireless system

    Get PDF
    The increasing demand for wireless communication system requires an efficient design in wireless communication system. One of the main challenges is to design error control mechanism in noisy wireless channel. Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) are two main error control mechanisms. Hybrid ARQ allows the use of either FEC or ARQ when required. The issues with existing Hybrid ARQ are reliability, complexity and inefficient design. Therefore, the design of Hybrid ARQ needs to be further improved in order to achieve performance close to the Shannon capacity. The objective of this research is to develop a Cross-Layer Design Hybrid ARQ defined as CLD_ARQ to further minimize error in wireless communication system. CLD_ARQ comprises of three main stages. First, a low complexity FEC defined as IRC_FEC for error detection and correction has been developed by using Irregular Repetition Code (IRC) with Turbo processing. The second stage is the enhancement of IRC_FEC defined as EM_IRC_FEC to improve the reliability of error detection by adopting extended mapping. The last stage is the development of efficient CLD_ARQ to include retransmission for error correction that exploits EM_IRC_FEC and ARQ. In the proposed design, serial iterative decoding and parallel iterative decoding are deployed in the error detection and correction. The performance of the CLD_ARQ is evaluated in the Additive White Gaussian Noise (AWGN) channel using EXtrinsic Information Transfer (EXIT) chart, bit error rate (BER) and throughput analysis. The results show significant Signal-to-Noise Ratio (SNR) gain from the theoretical limit at BER of 10-5. IRC_FEC outperforms Recursive Systematic Convolutional Code (RSCC) by SNR gain up to 7% due to the use of IRC as a simple channel coding code. The usage of CLD_ARQ enhances the SNR gain by 53% compared to without ARQ due to feedback for retransmission. The adoption of extended mapping in the CLD_ARQ improves the SNR gain up to 50% due to error detection enhancement. In general, the proposed CLD_ARQ can achieve low BER and close to the Shannon‘s capacity even in worse channel condition

    Radio Resource Management for Uplink Grant-Free Ultra-Reliable Low-Latency Communications

    Get PDF

    802.11 Payload Iterative decoding between multiple transmission attempts

    Get PDF
    Abstract. The institute of electrical and electronics engineers (IEEE) 802.11 standard specifies widely used technology for wireless local area networks (WLAN). Standard specifies high-performance physical and media access control (MAC) layers for a distributed network but lacks an effective hybrid automatic repeat request (HARQ). Currently, the standard specifies forward error correction (FEC), error detection (ED), and automatic repeat request (ARQ), but in case of decoding errors, the previously transmitted information is not used when decoding the retransmitted packet. This is called Type 1 HARQ. Type 1 HARQ uses received energy inefficiently, but the simple implementation makes it an attractive solution. Unfortunately, research applying more sophisticated HARQ schemes on top of IEEE 802.11 is limited. In this Master’s Thesis, a novel HARQ technology based on packet retransmissions that can be decoded in a turbo-like manner, keeping as much as possible compatibility with vanilla 802.11, is proposed. The proposed technology is simulated with both the IEEE 802.11 code and with the robust, efficient and smart communication in unpredictable environments (RESCUE) code. An additional interleaver is added before the convolutional encoder in the proposed technology, interleaving either the whole frame or only the payload to enable effective iterative decoding. For received frames, turbo-like iterations are done between initially transmitted packet copy and retransmissions. Results are compared against the non-iterative combining method maximizing signal-to-noise ratio (SNR), maximum ratio combining (MRC). The main design goal for this technology is to maintain compatibility with the 802.11 standard while allowing efficient HARQ. Other design goals are range extension, higher throughput, and better performance in terms of bit error rate (BER) and frame error rate (FER). This technology can be used for range extension at low SNR range and may provide up to 4 dB gain at medium SNR range compared to MRC. At high SNR, technology can reduce the penalty from retransmission allowing higher average modulation and coding scheme (MCS). However, these gains come with the cost of computational complexity from the iterative decoding. The main limiting factors of the proposed technology are decoding errors in the header and the scrambler area, and resource-hungry-processing. In simulations, perfect synchronization and packet detection is assumed, but in reality, especially at low SNR, packet detection and synchronization would be challenging. 802.11 pakettien iteratiivinen dekoodaus lähetysten välillä. Tiivistelmä. IEEE 802.11-standardi määrittelee yleisesti käytetyn teknologian langattomille lähiverkoille. Standardissa määritellään tehokas fyysinen- ja verkkoliityntäkerros hajautetuille verkoille, mutta siitä puuttuu tehokas yhdistetty automaattinen uudelleenlähetys. Nykyisellään standardi määrittelee virheenkorjaavan koodin, virheellisen paketin tunnistuksen sekä automaattisen uudelleenlähetyksen, mutta aikaisemmin lähetetyn paketin informaatiota ei käytetä hyväksi uudelleenlähetystilanteessa. Tämä menetelmä tunnetaan tyypin yksi yhdistettynä automaattisena uudelleenlähetyksenä. Tyypin yksi yhdistetty automaattinen uudelleenlähetys käyttää vastaanotettua signaalia tehottomasti, mutta yksinkertaisuus tekee siitä houkuttelevan vaihtoehdon. Valitettavasti edistyneempien uudelleenlähetysvaihtoehtojen tutkimusta 802.11-standardiin on rajoitetusti. Tässä diplomityössä esitellään uusi yhdistetty uudelleenlähetysteknologia, joka pohjautuu pakettien uudelleenlähetykseen, sallien turbo-tyylisen dekoodaamisen säilyttäen mahdollisimman hyvän taaksepäin yhteensopivuutta alkuperäisen 802.11-standardin kanssa. Tämä teknologia on simuloitu käyttäen sekä 802.11- että nk. RESCUE-virheenkorjauskoodia. Teknologiassa uusi lomittaja on lisätty konvoluutio-enkoodaajan eteen, sallien tehokkaan iteratiivisen dekoodaamisen, lomittaen joko koko paketin tai ainoastaan hyötykuorman. Vastaanotetuille paketeille tehdään turbo-tyyppinen iteraatio alkuperäisen vastaanotetun kopion ja uudelleenlähetyksien välillä. Tuloksia vertaillaan eiiteratiiviseen yhdistämismenetelmään, maksimisuhdeyhdistelyyn, joka maksimoi yhdistetyn signaali-kohinasuhteen. Tärkeimpänä suunnittelutavoitteena tässä työssä on tehokas uudelleenlähetysmenetelmä, joka ylläpitää taaksepäin yhteensopivuutta IEEE 802.11-standardin kanssa. Muita tavoitteita ovat kantaman lisäys, nopeampi yhteys ja matalampi bitti- ja pakettivirhesuhde. Kehitettyä teknologiaa voidaan käyttää kantaman lisäykseen matalan signaalikohinasuhteen vallitessa ja se on jopa 4 dB parempi kohtuullisella signaalikohinasuhteella kuin maksimisuhdeyhdistely. Korkealla signaali-kohinasuhteella teknologiaa voidaan käyttää pienentämään häviötä epäonnistuneesta paketinlähetyksestä ja täten sallien korkeamman modulaatio-koodiasteen käyttämisen. Valitettavasti nämä parannukset tulevat kasvaneen laskennallisen monimutkaisuuden kustannuksella, johtuen iteratiivisesta dekoodaamisesta. Isoimmat rajoittavat tekijät teknologian käytössä ovat dekoodausvirheet otsikossa ja datamuokkaimen siemenessä. Tämän lisäksi käyttöä rajoittaa resurssisyöppö prosessointi. Simulaatioissa oletetaan täydellinen synkronisointi, mutta todellisuudessa, erityisesti matalalla signaali-kohinasuhteella, paketin tunnistus ja synkronointi voivat olla haasteellisia

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    A Free Space Optic/Optical Wireless Communication: A Survey

    Get PDF
    The exponential demand for the next generation of services over free space optic and wireless optic communication is a necessity to approve new guidelines in this range. In this review article, we bring together an earlier study associated with these schemes to help us implement a multiple input/multiple output flexible platform for the next generation in an efficient manner. OWC/FSO is a complement clarification to radiofrequency technologies. Notably, they are providing various gains such as unrestricted authorizing, varied volume, essential safekeeping, and immunity to interference.
    corecore