149 research outputs found

    The application of multi-agent systems to the design of an intelligent geometry compressor

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this research, a multi-agent approach was applied to the design of a large axial flow compressor in order to optimise performance and to greatly enlarge the useful operating range of the machine. In this design a number of distributed software/hardware agents co-operate to control the internal geometry of the machine and thereby optimise the compressor characteristics in response to changes in flow conditions. The resulting machine is termed an ‘Intelligent Geometry Compressor’ (IGC). The design of a multi-agent system for the IGC was carried out in three main phases, each supported by computer simulation. In the first phase a steady-state model of the IGC was developed in which global control of the variable geometry is achieved by a single agent. This was used to help identify specific requirements for performance and the underlying parametric relationships. The subsequent phases incorporated additional agents into the machine design to meet these requirements. Initially, agents were deployed to optimise the settings of individual rows of stator vanes. In the final phase, the MAS was extended to incorporate agents into the machine design for the control of individual stator vanes. Simulation results were obtained which demonstrate the effectiveness of the intelligent geometry compressor in achieving delivery pressure regulation over a wide range of steady-state operating conditions whilst optimising overall machine efficiency and avoiding the occurrence of stall. Some of the implications for the physical design of an IGC arising from the MAS concept were briefly considered. The experience of the research supported by the specific results and observations from many simulation trials, led to the conclusion that multi-agent systems can provide an effective and novel alternative approach to the design of an intelligent geometry compressor. By implication, this conclusion may be extended to other intelligent machine applications where similar opportunity to apply a distributed control solution exists

    Transient performance simulation of gas turbine engine integrated with fuel and control systems

    Get PDF
    Two new methods for the simulation of gas turbine fuel systems, one based on an inter-component volume (ICV) method, and the other based on the iterative Newton Raphson (NR) method, have been developed in this study. They are able to simulate the performance behaviour of each of the hydraulic components such as pumps, valves, metering unit of a fuel system, using physics-based models, which potentially offer more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV). A proportional- integral (PI) control strategy is used for the simulation of engine control systems. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation methods and the systems have been applied to a model turbojet and a model turboshaft gas turbine engine to demonstrate the effectiveness of both two methods. The comparison between the results of engines with and without the ICV method simulated fuel system models shows that the delay of the engine transient response due to the inclusion of the fuel system components and introduced inter-component volumes is noticeable, although relatively small. The comparison of two developed methods applied to engine fuel system simulation demonstrate that both methods introduce delay effect to the engine transient response but the NR method is ahead than the ICV method due to the omission of inter-component volumes on engine fuel system simulation. The developed simulation methods are generic and can be applied to the performance simulation of any other gas turbines and their control and fuel systems. A sensitivity analysis of fuel system key parameters that may affect the engine transient behaviours has also been achieved and represented in this thesis. Three sets of fuel system key parameters have been introduced to investigate their sensitivities, which are, the volumes introduced for ICV method applied to fuel system simulation; the time constants introduced into those first order lags tosimulate the valve movements delay and fuel spray delay effect; and the fuel system key performance and structural parameters

    The architecture of pneumatic regenerative systems for the diesel engine

    Get PDF
    For vehicles whose duty cycle is dominated by start-stop operation, fuel consumption may be significantly improved by better management of the start-stop process. Pneumatic hybrid technology represents one technology pathway to realise this goal. Vehicle kinetic energy is converted to pneumatic energy by compressing air into air tank(s) during the braking. The recovered air is reused to supply an air starter, or supply energy to the air path in order to reduce turbo-lag. This research aims to explore the concept and control of a novel pneumatic hybrid powertrain for a city bus application to identify the potential for improvements in fuel economy and drivability. In order to support the investigation of energy management, system architecture and control methodologies, two kinds of simulation models are created. Backward-facing simulation models have been built using Simulink. Forward-facing models have been developed in the GT-POWER and Simulink co-simulation. After comparison, the fully controllable hybrid braking system is chosen to realize the regenerative braking function. A number of architectures for managing a rapid energy transfer into the powertrain to reduce turbo-lag have been investigated. A city bus energy control strategy has been proposed to realize the Stop-Start Function, Boost Function, and Regenerative Braking Function as well as the normal operations. An optimisation study is conducted to identify the relationships between operating parameters and respectively fuel consumption, performance and energy usage. In conclusion, pneumatic hybrid technology can improve the city bus fuel economy by at least 6% in a typical bus driving cycle, and reduce the engine brake torque response and vehicle acceleration. Based on the findings, it can be learned that the pneumatic hybrid technology offers a clear and low-cost alternative to the electric hybrid technology in improving fuel economy and vehicle drivability

    Acta Universitatis Sapientiae - Electrical and Mechanical Engineering

    Get PDF
    Series Electrical and Mechanical Engineering publishes original papers and surveys in various fields of Electrical and Mechanical Engineering

    Transient modelling of a diesel engine and air-path control

    Get PDF
    Due to the inherent nonlinearity of the diesel engine, real-time control of the variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR) valve still remains a challenging task. A controller has to be capable of coping with the transient operating condition of the engine, the interactions between the VGT and EGR, and also the trade-off effect in this control problem. In this work, novel real-time fuzzy logic controllers (RFLC) were developed and tested. Firstly, the proposed controllers were calibrated and validated in a transient diesel engine model which was developed and validated against the Caterpillar 3126B engine test bed located at the University of Sussex. The controllers were then further tested on the engine test bed. Compared to conventional controllers, the proposed controllers can effectively reduce engine emissions as well as fuel consumption. Experimental results show that compared to the baseline engine running on the Nonroad Transient Cycle (NRTC), mean values of the exhaust gas opacity and the nitrogen oxides (NOx) emission production were reduced by 36.8% and 33%, respectively. Instant specific fuel consumption of the RFLC engine was also reduced by up to 50% compared to the baseline engine during the test. Moreover, the proposed fuzzy logic controllers can also reduce development time and cost by avoiding extensive engine mapping of inlet air pressure and flow. When on-line emission measurements were not available, on-board emission predictors were developed and tested to supply the proposed fuzzy logic controller with predictions of soot and NOx production. Alternatively, adaptive neuro fuzzy inference system (ANFIS) controllers, which can learn from fuzzy logic controllers, were developed and tested. In the end, the proposed fuzzy logic controllers were compared with PI controllers using the transient engine model

    Flexible and robust control of heavy duty diesel engine airpath using data driven disturbance observers and GPR models

    Get PDF
    Diesel engine airpath control is crucial for modern engine development due to increasingly stringent emission regulations. This thesis aims to develop and validate a exible and robust control approach to this problem for speci cally heavy-duty engines. It focuses on estimation and control algorithms that are implementable to the current and next generation commercial electronic control units (ECU). To this end, targeting the control units in service, a data driven disturbance observer (DOB) is developed and applied for mass air ow (MAF) and manifold absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR) valve and variable geometry turbine (VGT) vane. Its performance bene ts are demonstrated on the physical engine model for concept evaluation. The proposed DOB integrated with a discrete-time sliding mode controller is applied to the serial level engine control unit. Real engine performance is validated with the legal emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty engines and comparison with a commercially available controller is performed, and far better tracking results are obtained. Further studies are conducted in order to utilize capabilities of the next generation control units. Gaussian process regression (GPR) models are popular in automotive industry especially for emissions modeling but have not found widespread applications in airpath control yet. This thesis presents a GPR modeling of diesel engine airpath components as well as controller designs and their applications based on the developed models. Proposed GPR based feedforward and feedback controllers are validated with available physical engine models and the results have been very promisin

    Model Analysis and Nonlinear Control of Air Compressors

    Get PDF
    RÉSUMÉ Pendant des décennies, les turbines à gaz ont été des dispositifs importants et fiables dans les domaines de la production d'énergie, de l'industrie pétrochimique, et de l'aéronautique. Ces machines utilisent les compresseurs centrifuges et axiaux qui se dégradent en présence d’instabilités aérodynamiques telles que le pompage et le décrochage tournant. Ces dernières limitent la performance et peuvent causer des sollicitations mécaniques importantes, une réduction de la durée de vie, du bruit et des vibrations. De plus, dans les compresseurs axiaux à vitesse variable (CAVV), les variations de vitesse affectent la stabilité des systèmes et peuvent entraîner le pompage et le décrochage tournant. Cela limite le taux de variation de vitesse et pénalise la performance. Le travail présenté dans cette thèse dresse premièrement l'analyse de bifurcation du modèle des CAVVs afin d’étudier l'impact de la dynamique de la vitesse sur la stabilité de points de fonctionnement efficaces. Ici, le taux de variation de vitesse (accélération) est défini comme un nouveau paramètre du modèle et une analyse détaillée de bifurcation numérique est fournie. Les résultats des simulations dans le domaine temporel valident non seulement l'analyse de bifurcation, mais élargissent aussi nos connaissances sur la réponse transitoire du modèle, qui est d’une importance majeure. L'analyse réalisée révèle que les variations de vitesse peuvent mener à un décrochage tournant entièrement développé ainsi qu’au décrochage temporaire mentionné précédemment. Les résultats montrent que les instabilités développées dépendent fortement du taux d'accélération. L'impact des autres paramètres du modèle, les vitesses initiale et finale, et la contribution des modes du décrochage sont également étudiés. Au niveau du contrôle, malgré toutes les réalisations présentées, la conception d’une commande robuste même pour des systèmes de compression axiaux à vitesse constante demeure encore un problème difficile. Ici, deux méthodes de commande non linéaires: le contrôle par modes glissants et le contrôle par passivité sont proposées pour résoudre ce problème de stabilité. Ces deux approches traitent de tous les aspects difficiles du sujet qui apparaissent dans la littérature : l'impact des perturbations externes, le manque de connaissance précise des paramètres du modèle, et l'absence d’un retour d’état complet.---------- ABSTRACT For decades, gas turbines have been important, widespread, and reliable devices in the field of power generation, petrochemical industry, and aeronautics. They employ centrifugal and axial compressors which suffer from aerodynamic instabilities, namely, surge and rotating stall. These performance limiting instabilities can cause component stress, lifespan reduction, noise, and vibration. Furthermore, in variable speed axial compressors (VSACs), speed variations affect the system stability and can lead to surge and rotating stall. This limits the rate of speed variations and results in important performance penalties. The present work firstly addresses the bifurcation analysis of VSACs’ model to investigate the impact of speed dynamics on the stability of efficient operating points. Here, the rate of speed variations (acceleration rate) is defined as a new parameter of the model and a detailed numerical bifurcation analysis is provided. The results of time-domain simulations not only validate the results of bifurcation analysis, but also broaden our knowledge about the transient response of the model, which is a matter of importance as well. The analysis reveals that speed variations can lead to a fully developed rotating stall as well as the previously reported temporary stall developments. The results show that the developed instabilities depend to a great extent on the acceleration rate. The impact of other key issues such as throttle gain, viscosity factor, initial speed, final speed, and the contribution of stall modes are also explored. From the control point of view, despite reported achievements, robust control design for compression systems remains a challenging problem. In this work, at first, two nonlinear approaches are proposed to tackle the stability problem of constant-speed axial compressors (CSACs). The first approach is a robust passivity-based control and the second one is a second order sliding mode control. The approaches tackle the challenging problems being addressed in the literature such as: the impact of external perturbations, the lack of detailed parameters knowledge, and the absence of full-state feedback. They drive the control from pressure and mass flow measurements and use throttle and close-coupled valve actuations. Finally, this study reports that these methods can be used in the case of VSACs by applying the required modifications to simultaneously control speed and instabilities. This simultaneous control design has been an open problem and the proposed method can improve the performance of VSACs

    A review of variable-pitch propellers and their control strategies in aerospace systems

    Full text link
    The relentless pursuit of aircraft flight efficiency has thrust variable-pitch propeller technology into the forefront of aviation innovation. This technology, rooted in the ancient power unit of propellers, has found renewed significance, particularly in the realms of unmanned aerial vehicles and urban air mobility. This underscores the profound interplay between visionary aviation concepts and the enduring utility of propellers. Variable-pitch propellers are poised to be pivotal in shaping the future of human aviation, offering benefits such as extended endurance, enhanced maneuverability, improved fuel economy, and prolonged engine life. However, with additional capabilities come new technical challenges. The development of an online adaptive control of variable-pitch propellers that does not depend on an accurate dynamic model stands as a critical imperative. Therefore, a comprehensive review and forward-looking analysis of this technology is warranted. This paper introduces the development background of variable-pitch aviation propeller technology, encompassing diverse pitch angle adjustment schemes and their integration with various engine types. It places a central focus on the latest research frontiers and emerging directions in pitch control strategies. Lastly, it delves into the research domain of constant speed pitch control, articulating the three main challenges confronting this technology: inadequacies in system modeling, the intricacies of propeller-engine compatibility, and the impact of external, time-varying factors. By shedding light on these multifaceted aspects of variable-pitch propeller technology, this paper serves as a resource for aviation professionals and researchers navigating the intricate landscape of future aircraft development

    A scientometric analysis and critical review of gas turbine aero-engines control: From Whittle engine to more-electric propulsion

    Get PDF
    The gas turbine aero-engine control systems over the past eight decades have been thoroughly investigated. This review purposes are to present a comprehensive reference for aero-engine control design and development based on a systematic scientometric analysis and to categorize different methods, algorithms, and approaches taken into account to improve the performance and operability of aircraft engines from the first days to present to enable this challenging technology to be adopted by aero-engine manufacturers. Initially, the benefits of the control systems are restated in terms of improved engine efficiency, reduced carbon dioxide emissions, and improved fuel economy. This is followed by a historical coverage of the proposed concepts dating back to 1936. A comprehensive scientometric analysis is then presented to introduce the main milestones in aero-engines control. Possible control strategies and concepts are classified into four distinct phases, including Single input- single output control algorithms, MIN-MAX or Cascade control algorithms, advanced control algorithms, More-electric and electronic control algorithms and critically reviewed. The advantages and disadvantages of milestones are discussed to cover all practical aspects of the review to enable the researchers to identify the current challenges in aircraft engine control systems
    • …
    corecore