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RÉSUMÉ 

Pendant des décennies, les turbines à gaz ont été des dispositifs importants et fiables dans 

les domaines de la production d'énergie, de l'industrie pétrochimique, et de l'aéronautique. Ces 

machines utilisent les compresseurs centrifuges et axiaux qui se dégradent en présence 

d’instabilités aérodynamiques telles que le pompage et le décrochage tournant. Ces dernières 

limitent la performance et peuvent causer des sollicitations mécaniques importantes, une 

réduction de la durée de vie, du bruit et des vibrations. De plus, dans les compresseurs axiaux à 

vitesse variable (CAVV), les variations de vitesse affectent la stabilité des systèmes et peuvent 

entraîner le pompage et le décrochage tournant. Cela limite le taux de variation de vitesse et 

pénalise la performance.  

Le travail présenté dans cette thèse dresse premièrement l'analyse de bifurcation du 

modèle des CAVVs afin d’étudier l'impact de la dynamique de la vitesse sur la stabilité de points 

de fonctionnement efficaces. Ici, le taux de variation de vitesse (accélération) est défini comme 

un nouveau paramètre du modèle et une analyse détaillée de bifurcation numérique est fournie. 

Les résultats des simulations dans le domaine temporel valident non seulement l'analyse de 

bifurcation, mais élargissent aussi nos connaissances sur la réponse transitoire du modèle, qui est 

d’une importance majeure. L'analyse réalisée révèle que les variations de vitesse peuvent mener à 

un décrochage tournant entièrement développé ainsi qu’au décrochage temporaire mentionné 

précédemment. Les résultats montrent que les instabilités développées dépendent fortement  du 

taux d'accélération. L'impact des autres paramètres du modèle, les vitesses initiale et finale, et la 

contribution des modes du décrochage sont également étudiés. 

Au niveau du contrôle, malgré toutes les réalisations présentées, la conception d’une 

commande robuste même pour des systèmes de compression axiaux à vitesse constante demeure 

encore un problème difficile. Ici, deux méthodes de commande non linéaires: le contrôle par 

modes glissants et le contrôle par passivité sont proposées pour résoudre ce problème de stabilité. 

Ces deux approches traitent de tous les aspects difficiles du sujet qui apparaissent dans la 

littérature : l'impact des perturbations externes, le manque de connaissance précise des 

paramètres du modèle, et l'absence d’un retour d’état complet. Enfin, cette étude propose une 

méthode de contrôle robuste qui peut contrôler simultanément la vitesse et les instabilités des 
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CAVVs. Cela a été jusqu’à date un problème ouvert et la solution apportée permet d’augmenter 

la performance des turbines à gaz. 
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ABSTRACT 

For decades, gas turbines have been important, widespread, and reliable devices in the 

field of power generation, petrochemical industry, and aeronautics. They employ centrifugal and 

axial compressors which suffer from aerodynamic instabilities, namely, surge and rotating stall. 

These performance limiting instabilities can cause component stress, lifespan reduction, noise, 

and vibration. Furthermore, in variable speed axial compressors (VSACs), speed variations affect 

the system stability and can lead to surge and rotating stall. This limits the rate of speed 

variations and results in important performance penalties.  

The present work firstly addresses the bifurcation analysis of VSACs’ model to 

investigate the impact of speed dynamics on the stability of efficient operating points. Here, the 

rate of speed variations (acceleration rate) is defined as a new parameter of the model and a 

detailed numerical bifurcation analysis is provided. The results of time-domain simulations not 

only validate the results of bifurcation analysis, but also broaden our knowledge about the 

transient response of the model, which is a matter of importance as well. The analysis reveals that 

speed variations can lead to a fully developed rotating stall as well as the previously reported 

temporary stall developments. The results show that the developed instabilities depend to a great 

extent on the acceleration rate. The impact of other key issues such as throttle gain, viscosity 

factor, initial speed, final speed, and the contribution of stall modes are also explored.  

From the control point of view, despite reported achievements, robust control design for 

compression systems remains a challenging problem. In this work, at first, two nonlinear 

approaches are proposed to tackle the stability problem of constant-speed axial compressors 

(CSACs). The first approach is a robust passivity-based control and the second one is a second 

order sliding mode control. The approaches tackle the challenging problems being addressed in 

the literature such as: the impact of external perturbations, the lack of detailed parameters 

knowledge, and the absence of full-state feedback. They drive the control from pressure and mass 

flow measurements and use throttle and close-coupled valve actuations. Finally, this study reports 

that these methods can be used in the case of VSACs by applying the required modifications to 

simultaneously control speed and instabilities. This simultaneous control design has been an open 

problem and the proposed method can improve the performance of VSACs. 
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CHAPTER 1  

INTRODUCTION AND MOTIVATION 

The development of the first gas turbine dates back to 1791 when John Barber patented a 

machine which looks structurally similar to the modern gas turbines. In 1899, Charles Gordon 

Curtis filed the first patent application for a gas turbine "Apparatus for generating mechanical 

power" [1] in the United State . The decade of the 30’s was a turning point for the applications of 

gas turbines. At first in 1937, the Brown Boveri Company of Switzerland used gas turbines for 

power generation. Then the first aircraft to fly purely on turbojet power was designed and tested 

in 1939 [2]. Today, gas turbines are widely used in industries and aeronautics. Petroleum 

industries rely on turbo compressor stations in the transportation of natural gas and chemical 

industries require turbo machines to pressurize chemical products. The current generation of 

aircraft habitually uses gas turbines to produce mechanical and electrical power. 

However, gas turbines have always suffered from important aerodynamic instabilities. 

Among these, rotating stall and surge occur in the compressor stage and badly affect the 

performance of the system. They possibly result in engine failures and severe mechanical 

damages due to high blade vibrations, pressure oscillations, and flow reversal. To understand the 

origin of these instabilities, we briefly describe next the operation of air compressors in gas 

turbines. 

1.1 Air Compressors in Gas Turbines 

Figure 1.1 shows the schematic of a gas turbine including the compressor, the combustor, 

and the power turbine.  

 

Figure 1.1: Schematic of a gas turbine 
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As an integrated part of the gas turbine, the compressor delivers the compressed air to the 

combustion chamber where fuel is added. The combustor then burns the mix and feeds the hot 

and high pressure exhaust into the power turbine components. The expanded gas drives the 

power turbine producing the needed energy for turning the compressor and other mechanical 

parts. 

There are two basic types of compressors; axial flow and centrifugal flow. The difference 

between them is the way that the air flows through the compressor. Depending on the application, 

gas turbines utilize either or both axial or centrifugal compressors. 

1.2 Principal Operation of Compressors 

1.2.1 Centrifugal Compressors 

Figure 1.2 shows impellers (the rotary section) of a centrifugal compressor’s stage in a 

gas turbine. The continuous flow of centrifugal compressors receives energy from the shaft’s 

impellers. The impellers and the diffusers contribute to transform the energy to the flow in 

different ways. The impellers add kinetic energy to the fluid which is proportional to the 

tangential velocity of the impellers according to Euler's fluid dynamics equation. On the other 

hand, outside of the rotary parts, there is no transfer of mechanical work and the total energy of 

the fluid does not change in traversing the stationary components. During the diffusion process, 

the fluid’s velocity decreases, and according to Bernoulli’s law, the pressure of the fluid therefore 

increases and the added kinetic energy changes to a potential form (static pressure rise, see [3-5] 

for more details). In centrifugal compressors, the flow leaves the compressor in a direction 

perpendicular to the axis of the rotor. 

Centrifugal compressors are popular throughout industry because they achieve high 

efficiency, high reliability, and high flow rates with a few moving parts. Furthermore, their seals 

allow them to operate nearly oil-free. The main drawback of centrifugal compressors is that they 

cannot provide high compression ratios without multiple stages. 



3 

 

 

Figure 1.2: Centrifugal Compressor (image courtesy of Wikipedia) 

1.2.2 Axial Compressors 

An axial compressor consists of rotary and stationary blades; Figure 1.3 shows the rotor 

and the stator of an axial-flow compressor. In this type of compressors, the flow of the fluids is 

parallel to the rotational axis. Axial compressors normally comprise different stages to achieve 

the required pressure rise. Each stage is configured by a combination of a rotor which accelerates 

the fluid, followed by a diffusing stator which obtains a pressure increase. 

 

 

Figure 1.3: Axial compressor’s rotor and stator (image courtesy of Wikipedia) 
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In a multi-stage axial compressor, by producing low pressure increases in the stages on 

the order of 1.1:1 to 1.4:1, very high efficiencies can be obtained. This multi-stage configuration 

permits an overall pressure increase of up to 40:1 in some aerospace applications and a pressure 

ratio of 30:1 in industrial applications.  

1.3 Compressors’ Instabilities 

As already mentioned, compressors suffer from two kinds of instabilities limiting their 

efficiency and performance: rotating stall and surge. These instabilities arise in the unsteady fluid 

and structural dynamics and can lead to catastrophic failure of the system due to large mechanical 

or thermal loads on the different parts of compressors. These unsteady aerodynamic 

nonlinearities are difficult to predict accurately. Over the years, sensing, preventing, or 

controlling such instabilities have been posing complex problems to researchers. 

1.3.1 Rotating Stall 

Emmon’s et al. [6] model for the formation of rotating stall provides a simple explanation 

about its propagation. As a likely consequence of a closing throttle or a perturbation in the 

incoming flow, the angle of attack in one of the rotor blades excessively increases which causes 

the flow separation from the blade. This creates a blockage or a vacuum area that prevents air 

from entering the blade and then redirects the flow toward the lower and the upper blades.  

Consequently, the angle of attack decreases in the lower blade and reduces the risk of the 

flow separation in this area. Otherwise, for the upper blade, the angle of attack increases to a 

point where the flow separates from the next blade. The stall development in the upper blade in 

turn decreases the angle of attack in the initial blade and forces it to go out of the stall condition. 

Therefore, the stall cell starts to propagate from one blade to the next; in other words rotates 

around the annulus of the compressor.  

Figure 1.4 demonstrates a simple schematic of a compression system in which the rotating 

stall is formed as a perturbation in the axisymmetric mean flow in the first stage of the 

compressor. One can imagine the rotating stall as a mass flow perturbation that consists of 

different harmonics. 
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Figure 1.4: Rotating stall as a perturbation of the axisymmetric mean flow  

1.3.2 Surge 

Compression systems also suffer from deep surge which is a violent instability 

represented by a large axial oscillation of the flow. As a result, the direction of the flow changes 

and the pressure rise capability of the system dramatically decreases. This instability causes 

component stress (i.e. the backflow including the hot gas of the combustor can damage the blades 

of the compressor in few cycles), lifespan reduction, noise and vibration, and large penalties in 

performance. As explained in [7], surge is caused by alternating the storage and the release of 

compressed air in the downstream ducting of the compressor. The compressibility of the air acts 

as a spring system, and the nonlinear compressor performance characteristic provides a negative 

damping to this spring under some operating conditions and leads to surge. At least two different 

types of surge exist: 1- Mild/Classical surge in which flow reversal does not occur and a small 

pressure fluctuation can be seen, 2- Deep surge in which flow reversal is possible (Figure 1.5). 

This is an axisymmetric limit cycle of flow.  

The main difference between deep surge and rotating stall is that the average mass flow in 

deep surge is circumferentially uniform but axially unstable, but rotating stall has a 

circumferentially nonuniform mass flow with a steady average value. Experimental results show 

that rotating stall has little effect on the performance of centrifugal compressors; however, in the 

case of axial compressors, rotating stall seems more important at low shaft speeds and surge 
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occurs more frequently at high speeds [8, 9]. Furthermore, in variable speed axial compressors, 

the speed dynamics can deeply affect these nonlinearities [10]. 

 

 

 

Figure 1.5: Pressure variation and flow oscillations including a flow reversal during deep surge 
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1.4 Research Questions 

Previous sections highlighted the importance of compression systems in industries and 

briefly explained the instabilities which limit the performance of compressors. These instabilities 

will be addressed in detail later in Chapter 3. In this section, a set of questions addressing the key 

issues and open problems in the literature is formulated to direct the research efforts. The current 

research is centered around the following questions: 

• Is there an association between the characteristics of speed variations (e.g. the rate and the 

range of variations) and the instabilities in variable speed axial compressors? 

• How does a speed variation affect compressor behavior? Can it lead to fully developed stall on 

top of the already observed temporary rotating stall? 

• What role, if any, do model parameters (such as throttle gain and viscosity) play in the multi-

mode rotating stall developments? 

• What robust strategies can one employ to overcome the challenging problems of control design 

in constant-speed compressors? 

• How can one simultaneously and robustly control speed and surge/stall instabilities in variable 

speed compressors? 

• How do the saturation and the dynamics of actuators affect the performance of the controllers?  

1.5 Research Objectives 

In light of these questions, three main objectives of the present work are stated as follows: 

I. Investigation of the Qualitative Behavior of VSACs’ Model 

In the present work, the first objective is to carry out a bifurcation analysis to determine 

how model dynamics depend upon the choice of model’s parameters. It is important to explore 

the qualitative properties of nonlinear instabilities: surge and rotating stall, and determine the 

impact of speed variations on the nonlinearities as well. The impact of the transient response of 

the model on the nonlinear stationary behavior is also addressed. A better knowledge of the 

qualitative behavior of variable speed axial compressors will shed lights into methods to suppress 
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the exclusive instabilities of these widely used machines, and may also lead to the refinements of 

the existing models. 

II. Robust Control of Constant-speed Axial Compressors 

The second objective is to develop a robust control approach to stabilize compressors 

when the rotor speed is constant. This approach should tackle all challenging problems such as 

the impact of external perturbations, the lack of detailed parameter knowledge, and the absence 

of full-state feedback.   

III. Simultaneous Speed and Surge/Stall Robust Control of VSAC 

In variable speed axial compressors, the temporary stall during the speed variations leads 

to temporary pressure drops at the output and spells serious operational problems. Consequently, 

satisfying the procedural speed variation requirements and achieving the required pressure rise, at 

the same time, reflect a need for simultaneous speed and surge/stall control in these machines.  

The third and final objective of the present research is thus to develop an effective control 

approach which not only guarantees surge-free and stall-free speed variations, but also takes on 

all the challenges of the second objective.   

1.6 Contributions of Current Work 

The contributions of the thesis can be summarized as follows: 

a- Broaden our knowledge of bifurcations in variable speed axial 

compressor model and the effect of parameter variations  

This work firstly serves to provide a better understanding of the qualitative behavior of 

variable speed axial compressors. Here, the impact of speed variations on the temporarily 

developed rotating stall is investigated in detail. The rate of speed variation (acceleration rate) is 

defined as a new parameter of the model and a detailed numerical bifurcation analysis is provided 

for this parameter. This study reveals that speed variations not only cause temporary rotating stall 

developments and pressure drops but can also lead to a fully developed rotating stall or deep 

surge. It is demonstrated that the compressor’s instabilities depend to a great extent on the 
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acceleration rate as a new bifurcation parameter. The impact of other key issues such as throttle 

gain, viscosity factor, initial speed, final speed is investigated as well.  

b- Contribution of higher order harmonics of rotating stall during speed 

variations  

In addition to stationary solutions and instabilities that develop, the transient response of 

the compression systems deserves close attention. As discussed before, the speed transitions 

result in temporary stall developments, which cannot be studied by a bifurcation analysis. Time-

domain simulations reveal that higher order harmonics of rotating stall are deeply affected by the 

acceleration rate. It is shown here that the higher order harmonics dominate the first harmonic for 

high acceleration rates. This underlines the need for a multi-mode robust control approach to 

effectively damp out rotating stall and surge in variable speed compressors. The results report 

that the viscosity factor affects also the contribution of higher harmonics in VSACs.     

c- Robust stabilization of constant speed compressors comprising CCV  

Despite all achievements in stabilizing CSACs, a control design, which takes on all 

previously mentioned challenges, is still an open problem. In this work, two nonlinear approaches 

are proposed to tackle the problem. The first approach is a robust passivity-based control 

(RPBC). The simple form of the developed controller is the first advantage of the applied 

method. It is not based on full-state feedback and does not require the knowledge of model 

parameters. Furthermore, the new developed RPBC greatly relaxes the assumptions on 

perturbations, which are usually supposed to be vanishing [11, 12], by introducing bounded non-

vanishing disturbances. The controller then achieves the global ultimate boundedness of state 

variables of the system. 

The second proposed approach is a second order sliding mode control (SOSMC). The 

proposed chattering-free SOSMC combined with feedback linearization robustly stabilizes both 

surge and rotating stall by throttle and CCV actuations in the presence of external disturbances 

and model uncertainties. Full state feedback including rotating stall amplitude is not assumed and 

the control is only driven from pressure and mass flow measurements. Furthermore, the control 

scheme does not require the accurate knowledge of the compression system parameters. The 

global asymptotic stabilization of the closed-loop system is achieved in a finite time by adjusting 
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only a small number of control parameters. The reasonable computation load and the fairly 

straightforward implementation of SOSMC make it an excellent choice for this application. The 

impact of actuator dynamics is also addressed. 

d- Simultaneous robust control of speed and surge/stall in VSACs  

In the present research, it is shown that the developed robust control designs for CSAC 

(e.g RPBC) can be applied with appropriate modifications to VSACs. It is demonstrated that the 

controller can damp out temporary rotating stall during speed variations and stabilize the 

compressor at an efficient operating point in the vicinity of unstable zone. The impact of actuator 

saturation is investigated as well.  

1.7 Outline of the Thesis 

The main body of this thesis is organized as follows. Chapter 2 provides a brief literature 

review on the three aspects of modeling, sensors/actuators, and control of compression systems. 

Chapter 3 recalls two of the most important models used in the literature: the one developed by 

Moore and Greitzer for CSACs, the so-called MG3, and the one developed by Gravdahl for 

VSACs, and defines different characteristics of these two models. It then reviews the time-

domain simulation results of surge and rotating stall and the bifurcation analysis of MG3 to 

describe the issues to be addressed for VSACs and to serve as a background to the next chapters. 

Chapters 4 and 5 extensively investigate the qualitative behavior of variable speed axial 

compressors by performing numerical bifurcation analysis based on continuation method and by 

carrying out time-domain simulations. In these chapters both the stationary and the transient 

response of Gravdahl’s model are explored. Chapters 6 and 7 report on the results of two 

submitted manuscripts which tackle the robust control of MG3 by CCV and throttle actuations. 

These chapters propose two different approaches based on RPBC and SOSMC. Both of these 

methods, at first, partially decouple the original system by applying a preliminary feedback and 

then robustly stabilize the nominal system. Here, the control is driven from pressure and mass 

flow measurements. In these chapters, the impact of actuators’ dynamics is also studied. Chapter 

8 consists of the content of a manuscript which successfully overcomes the problems of stall 

developments during speed variations in VSACs. In this chapter, the impact of actuator saturation 

is also studied. 
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Finally, the conclusions about this work are drawn in Chapter 9 and references and 

appendices are given at the end. 
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CHAPTER 2  

LITERATURE REVIEW 

The literature on compressors is vast. A basic introduction is given by e.g. Ferguson [13], 

Cohen et al. [14], and more advanced topics are covered by Cumpsty [5], Aungier [15], and 

Giampaolo [3]. In the 1950s and 1960s, it was found that rotating stall and surge appear in 

compressors in a region of working points. This led to a series of theoretical and experimental 

studies on rotating stall and surge [16-26]. A lot of research was then conducted to develop anti 

stall/surge systems for compressors [27-29]. Although these instabilities are often considered as 

separate phenomena, there is a coupling between them and rotating stall is a precursor to the 

onset of surge in many compressors [30, 31]. The prediction of the onset of rotating stall or surge 

has also been addressed by many investigators [32-35]. 

To situate the present study and its contribution in relation to previous research and to 

obtain the required background, a brief literature review is provided on three aspects: modeling, 

sensors/actuators, and control.   

2.1 Modeling 

Due to the diversity of compressor applications, a wide variety of models exists for 

compressor dynamics simulations and control design, each model with its own strengths and 

limitations. Generally, the models can be divided into three categories: 1- 1D models being only 

capable of predicting surge, 2- 2D models describing both surge and rotating stall, and 3- 3D 

models describing the spatial non-linear aspects of the flow in multi-stage transonic compressors 

including compressibility.  

 Modeling the nonlinear behavior of rotating stall and surge in compression systems has 

been pursued for decades. Greitzer is clearly a pioneer in this area [18]. Although there are many 

models for rotating stall and surge, from a control point of view,  a nonlinear 2D model 

developed by Moore and Greitzer [36] dominates the recent studies on rotating stall and surge 

[37]. This basic model has been successfully applied to a wide variety of stability and control 

problems. The initial formulation of the model is based on a two-dimensional incompressible 
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flow assumption in the duct and the compressor. The model was converted to a suitable form for 

system analysis and control design by Paduano [38, 39] and Mansoux [40]. The Moore-Greitzer 

model and its extensions have the following advantages: they are low order, they can capture 

most of nonlinearities and operational effects, and they are physical rather than computational. A 

shortcoming of these models is that they do not describe multistage effects and gas 

compressibility. This limitation becomes important when the level of required fidelity increases, 

but in control studies, it has not been debilitating [41]. 

 The three-state lumped parameter Moore and Greitzer model or MG3 is based on a first 

harmonic approximation of rotating stall. This model was developed by using a Galerkin 

procedure applied to the original PDE form of the model. Great efforts have been made to 

augment this model in various ways, to increase its accuracy, and to model the force of actuators 

for active control. The main shortcoming of MG3 is the one mode approximation of rotating stall 

(see chapter 3 for more information). Mansoux et al. [40] found that during the stall inception, 

higher order modes interact with and dominate the first harmonic. The relaxation of the one mode 

approximation was derived by Adomaitis and Abed [42], Mansoux et al. [40] and Leonessa et al. 

[43].  

Another shortcoming of the original work of Moore and Greitzer lies in its constant 

compressor speed assumption. In 1997, Fink et al. [44] presented a model for variable speed 

centrifugal compressors. In the same year,  Gravdahl and Egeland [45] derived a similar variable 

speed model and investigated surge and speed control. However, these models were both 

developed for centrifugal machines, and do not include rotating stall as a state variable. For the 

first time, the model developed by Gravdahl [46, 47] considered the speed of the rotor as a state 

variable and included higher harmonics (modes) of rotating stall. This is an extension to MG3 

where the effect of gas viscosity is also taken into account. The gas viscosity was first introduced 

in the Moore-Greitzer model by Adomaitis and Abed [42] and its effects were investigated by Gu 

et al. [37] and Hendrickson and Sparks [48]. Researchers have also focused their efforts on 

exploring the qualitative behavior and bifurcation analysis of MG3 to determine the impact of 

model parameters on the developed instabilities [48-53]. Most of these studies have addressed the 

effects of the throttle gain as a bifurcation parameter of MG3. The bifurcation analysis of MG3 is 

briefly reviewed in chapter 3. 
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Gravdahl’s model for variable speed axial compressors is explored in this work to 

investigate the qualitative of the model including surge and rotating stall, which has been an open 

problem since 1998. This model is explored to firstly broaden our knowledge about the impact of 

speed variations on model nonlinearities, and finally, to develop a simultaneous speed and 

stall/surge control. The model is reviewed in chapter 3.  Table 2.1 briefly summarizes the 

different types of models developed by various researchers. These models consider axial or 

centrifugal compressor dynamics and can be used for either modeling or control purposes.  

Table 2.1: Compression system modeling techniques 

CC: Centrifugal compressor, AC: Axial compressor, C: Control, M: Modeling, S: Variable speed  

 

Reference Dim. Compressible States Compressor Application 

Greitzer [18] 1 Incompressible �,� AC M 

Hansen[54] 1 Incompressible �,� CC M 

Fink et al.[44] 1 Incompressible �,�,� CC MS 

Gravdahl-Egeland 1 Incompressible �,�,� CC MCS 

Eveker-Nett [55] 2 Incompressible �,�,� CC MCS 

Moore-Greitzer 2 Incompressible �,�, � AC MC 

Adomaitis [56] 2 Incompressible �,�, � AC MC 

Hynes [57] 2 Incompressible �,�, � AC MC 

Wang et al.[58] 2 Incompressible �,�, � AC MC 

Mansoux [40] 2 Incompressible �,�, �� AC M 

Hendrickson[48] 2 Incompressible �,�, �� AC C 

Humbert-Krener 2 Incompressible �,�, �� AC C 

Adomaitis[42] 2 Incompressible �,�, �� AC C 

Paduano [38] 2 Incompressible �,�, �� A MC 

Gravdahl [47] 2 Incompressible �,�, ��,� AC MS 

Hendricks et 2 Comp./Multi. spatial AC M 

Fulner et al.[61] 2 Comp./Multi. spatial AC MC 

Gong et al.[62] 3 Comp./Multi. spatial AC M 

Weigl et al.[63] 3 Comp./Multi. spatial AC MC 
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In the table, the models specified by "��" include higher order harmonics of rotating stall. 

The non-constant speed compressor models, which involve the speed of the rotor  as a state, are 

also pointed out in the table. 

2.2 Sensors and Actuators 

Several studies have been done on different types of sensors and actuators for measuring 

surge and rotating stall. The number of sensors or actuators being needed is another key issue, 

which has been addressed.  Contrary to 1D surge sensing and actuating, the control of rotating 

stall requires information about the non-uniformity of the flow, so an array of sensors placed 

around the circumference of the compressor should be used (2D sensor). Badmus et al. [64] 

found that the linearized compressor dynamics around an unstable equilibrium point are 

uncontrollable and unobservable if 1D actuation and annulus-averaged sensing is applied. They 

then concluded that 2D sensors and 2D actuators are required for linear feedback stabilization 

[65]. A common realization of the 2D sensor is a circular array of pressure transducers [64, 66, 

67] or hot wire anemometers [39, 54, 68]. As seen from the quantitative analysis in [69], the 

effect of position, number, and type of sensors and actuators seems worthy of further research. 

The important drawbacks of 2D sensors and actuators are: complexity, overall weight and cost 

due to the large number of required sensors and actuators, which reduces reliability as well.  

 Among the several actuators used for stabilizing compression systems, the most  

promising are air injection [70] and close-coupled valves (CCV) [71] (see Table 2.2). Other 

examples include bleed valves[72], throttle valves [73], variable inlet guide vanes [74], 

loudspeakers [75], tailored structures [8], recirculation [76], movable plenum walls [77], 

synthetic jets [78], tip clearance [79] and plasma actuator [80]. The impacts of actuators’ and 

sensors’ dynamics, their noise levels, and their saturation limits on the effectiveness of the 

compression control systems have also been investigated [81, 82]. 

In this work, throttle and CCV actuations are applied to tackle the stabilization problems 

of compression systems. The impact of actuators’ dynamics is also addressed. 
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Table 2.2: Sensors and actuators for measuring and controlling rotating stall and surge  

A: axial, C: centrifugal, L: low speed, H: high speed, S: single-stage, M: multi-stage V: variable speed 

 

Reference Sensor Actuator Compressor Surge/Stall control 

Badmus et al. [83] Plenum pressure Throttle AS Surge 

Badmus et al. [84] Inlet pressure Throttle AL Surge 

Williams et al.[75] Diffuser pressure Loudspeaker C Surge 

Gysling et al.[8] Plenum pressure Movable wall C Surge 

Jungowski [85] Duct Pressure Loudspeaker C Surge 

Nakagawa [86] Plenum pressure Suction-side valve C Surge 

Pinsley [87] Plenum pressure Throttle C Surge 

Badmus [64] Inlet pressure Throttle ALS Stall 

Behnken [66] Inlet pressure Air-injection AL Stall 

Gysling et al. [88] Inlet pressure Air-injection ALS Stall 

Haynes et al. [89] Hot wires Movable IGVs ALM Stall 

Paduano et al. [39] Hot wires Movable IGVs ALS Stall 

Simon  Yeung [90] Inlet pressure Air-injection/Bleed ALS Stall 

Gravdahl et al. [91] Pressure/speed CCV AV Surge/speed 

Song et al. [92] Flow/pressure CCV AV Surge/speed 

Day [68] Hot wires Air-injection ALM Surge/Stall 

Der-Chreng et al. [93] Pressure/flow CCV AL Surge 

Gravdahl[47] Pressure CCV AL Surge/Stall 

Bartolini [94] Pressure/Flow CCV/Throttle ACL Surge 

Liaw[95] Pressure/flow/stall CCV/Throttle AL Stall/Surge 

Williams et al.[67] Diffuser pressure Air-injection C Surge/Stall 

Feulner [96] Static Press. array Air-injection AMH Surge/Stall 

Berndt et al.[97] 3D flow measure Air-injection AMH Surge/Stall 

Weigl [63] Static Press. array Air-injection ASH Surge/Stall 
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2.3 Control 

The prevention and control of surge and rotating stall in compression systems has been 

the subject of many studies during the last decades. First methods are based on maintaining stable 

operation with a sufficient margin from the instabilities [98-102]. This stability margin is 

considered by including uncertainties in the location of the stall point, typical disturbances, load 

variations, inlet distortions, combustion noises, and a consideration of the sensors’ and actuators’ 

limitations. These methods as standard and simple industrial solutions achieve stability at the 

expense of performance [103]. Contrary to conventional methods which work far from the 

unstable zone, the aim of recent active methods is to push the stable domain farther away from 

the operating point. However, the dynamic equations of compressors’ models, which are highly 

nonlinear, represent a complex problem both for system analysis and control design. 

Furthermore, uncertain terms comprising external disturbances and parametric uncertainties 

stress a need for robust control approaches.  

From a control point of view, the active control of centrifugal compressors is almost 

restricted to surge consideration because it is believed that rotating stall has little effect on 

centrifugal compressor performance [6, 104]. However, in axial compressors, both rotating stall 

and surge control are addressed in the literature. Most control-oriented studies published during 

the last decades employed Moore and Greitzer model or its extensions, because they are well 

suited for control applications.  

Active surge control was first introduced in the literature by Epstein et al. [77] in 1989 by 

using a linear method. The main drawback of the method was the limited operating region. The 

next efforts were mostly based on nonlinear control approaches. The simultaneous control of 

speed and surge in centrifugal compressors has been widely investigated as well (see [91-93, 105] 

e.g.). In comparison with surge control design in centrifugal compressors, rotating stall and surge 

control in axial flow compressors poses a challenging problem due to several reasons. The first 

key issue is that the precise estimation of axial compressor’s model parameters, especially in the 

unstable zone, is difficult. Therefore, control approaches that require the knowledge of model 

parameters and set some constraints on them cannot be robustly implemented (see [106-110] 

where the knowledge of model parameters is essential to form the control laws). Another issue is 
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that the rotating stall, as a state of axial compressor model, is experimentally difficult to measure; 

and control methods that need full-state feedback cannot practically overcome this problem (see 

[95, 110-112] where the amplitude of rotating stall is used to form feedback laws). Although, the 

measurement of mass flow, as the second state of compressors’ model, is a challenge, it is 

surmountable [113]. Mass flow is frequently used in the literature to develop control design 

methodologies [114, 115], and there exist some implemented controllers that use this 

measurement [116]. Furthermore, nonlinear observers are proposed to estimate mass flow [112, 

117-122]. The last, but not least, problem is the effect of external disturbances that can drive axial 

compressors toward instabilities (see [109, 121, 123] where external perturbations are not 

included). Pressure and mass flow disturbances were first taken into account in a compressor 

model by Simon and Valavani [124]. As demonstrated by Haddad et al., a feedback controller 

that does not consider model uncertainties and external perturbations can have adverse effects on 

compression system performance by driving the compression system to a stalled equilibrium or a 

surge limit cycle [125].  

Table 2.3-1 shows the most significant efforts in the active control design of rotating stall 

and surge during the last two decades. In this table, the used model, control approach, and 

actuation method are mentioned for each work. Furthermore, Table 2.3-2 highlights the limitation 

of each work. This table reports that despite great achievements in the control of compression 

systems, even in the case of CSACs, a robust control design, which includes external perturbation 

and model uncertainties and does not rely on full-state feedback, is still a challenging problem. In 

spite of devoted efforts to control surge and speed in centrifugal compressors, the simultaneous 

control of instabilities (rotating stall and surge) and speed in variable speed axial compressors is 

still an open problem.  

The early work of Gravdahl [47] briefly reported some exclusive behavior of variable-

speed axial compressors, which cannot be captured by constant-speed models (see chapter 3 for 

details). He performed limited time-domain simulations and showed that rotating stall can 

temporarily develop during speed transitions even far from the unstable zone where MG3 does 

not imply any stall developments. Gravdahl’s work stressed the need for detailed model analysis 

to assess the impact of parameters’ variations on the qualitative behavior of the system. The 
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problem of variable speed compressors’ control design is also pointed out among topics for 

further research in Moore and Greitzer work [36] and Gravdahl’s thesis [47]. 

Table 2.3-1: Some of the most significant efforts in active control of compressors 

SMC: Sliding Mode Control, EKF: Extended Kalman Filter, UDE: Uncertainty and Disturbance Estimator  

No Year Author Control method Actuator Type Model 

1 2013 Chen [126] Nonlinear Throttle A MG3 

2 2013 Lin [127] Fuzzy  Throttle+Speed C Gravdahl 

3 2012 Ananth [128] Nonlinear Throttle C Ext. MG3 

4 2012 Xiao [129] UDE CCV C MG 

5 2011 Javadi [130] NFuzzy+SMC Throttle A MG3 

6 2010 Vepa [103] Nonlinear Pressure  A Ext. MG3 

7 2009 Song [92] FOSMC Pressure (throttle) C MG 

8 2009 Shehata [131] FOSMC(CCV) CCV+Throttle A MG3 

9 2009 Ahn [132] LQR+EKF Thrust magnetic C MG 

10 2008 Liaw [123] Feedback linearisation CCV or Throttle C MG 

11 2008 Bartolini [133] SOSMC CCV+Throttle C Ext. MG 

12 2007 Murrey [134] Bifurcation Throttle A MG3 

13 2005 Sanadgol [135] Backstepping Magnetic Thrust C Ext. MG 

14 2005 Bohagen [136] Backstepping Drive torque C Gravdal  

15 2004 Sanadgol [137] FOSMC Magnetic Thrust C Ext. MG 

16 2004 Liaw [138] Backstepping backstepping C Fink 

17 2003 Ananthkrish [139] Bifurcation Throttle  A MG3 

18 2002 Liaw [140] Lyapunov Throttle+CCV A MG3 

19 2001 Liaw [141] FOSMC CCV A MG3 

20 2000 Leonessa [105] FOSMC Throttle/Tourque C Ext. MG 

21 1999 Gravdahl [47] Passivty-Based CCV A Ext. MG3 

22 1998 Krstic [50] Backstepping Throttle A MG3 
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Table 2.3-2: Limitations of the work being mentioned in Table 2.3-1 

No Year Author Surge/Stall Limitations 

1 2013 Chen [126] Surge/Stall Needs the knowledge of model parameters 

2 2013 Lin [127]  Surge Only can be used for surge control 

3 2012 Ananth [128] Surge Only can be used for surge control 

4 2012 Xiao [129] Surge Only can be used for surge control 

5 2011 Javadi [130] Surge/Stall Knowledge of model parameters by NFuzzy 

6 2010 Vepa [103] Rotating stall Needs the knowledge of model parameters 

7 2009 Song [92] Surge/Speed Needs the knowledge of model parameters 

8 2009 Shehata [131] Surge Needs the knowledge of model parameters 

9 2009 Ahn [132] Surge Needs the knowledge of model parameters 

10 2008 Liaw [123] Surge Does not include uncertainties and perturbations 

11 2008 Bartolini [133]  Surge Only can be used for surge control 

12 2007 Murrey [134] Stall/Surge Needs the knowledge of model parameters 

13 2005 Sanadgol [135] Surge Only can be used for surge control 

14 2005 Bohagen [136] Surge Needs the knowledge of model parameters 

15 2004 Sanadgol [137] Surge Only can be used for surge control 

16 2004 Liaw [138] Surge Only can be used for surge control 

17 2003 Ananthkrish [139] Surge/Stall Needs the knowledge of model parameters 

18 2002 Liaw [140] Surge Only surge and add delay (washout)? 

19 2001 Liaw [141] Surge/Stall Full state Feedback, some knowledge of pars 

20 2000 Leonessa [105] Surge Only can be used for surge control 

21 1999 Gravdahl [47] Surge/stall Model parameter information and	���,��� 
22 1998 Krstic [50] Surge/Stall Model parameters without perturbations 

2.4 Conclusion 

This tailored literature review not only supports the choice of the model and the actuation 

method but also reveals the remaining questions in model analysis and control design of constant-

speed and variable-speed axial compressors. The review has direct links to the research questions 

and objectives stated in Chapter 1. 
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CHAPTER 3  

MODELING AND ANALYSIS 

In what follows, MG3 for CSACs and Gravdahl’s model for VSACs are recalled, surge 

and stall time-domain simulations are presented and bifurcation curves of MG3 are reviewed. 

This chapter provides the needed background for the more detailed analysis given later. 

3.1 MG3 for CSACs 

MG3 is a low order state space model capturing rotating stall and surge phenomena in 

CSACs. A basic compression system is shown in Figure 3.1 [36]. �� is the total upstream 

pressure of the compressor and �� is the static pressure in the plenum. The flow is assumed to be 

incompressible in the compressor and compressible in the plenum. It is also assumed that the 

speed of compressor is constant (see [36] for more details and typical numerical parameters).  

By applying a Galerkin approximation [36], the original model in PDE form is changed to 

three ordinary differential equations given by equations (3.1)-(3.3).  

Φ� =
	

�
�−Ψ + Ψ��Φ� −

��
�

��
�

− 1��	                                                                                      (3.1) 

Ψ� =
	

���
�	
�Φ − Φ�(Ψ)�		                                                                                                           (3.2) 

�� = � �1 − ��
�

− 1�� −

�
� �		                                                                                                      (3.3) 

where Φ is the annulus averaged mass flow coefficient, Ψ is the non-dimensional plenum 

pressure and � is the squared amplitude of rotating stall. 

 

Figure 3.1: Schematic of a compressor showing non-dimensional lengths  
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�� =
��
�

 is the effective flow-passage non-dimensional length with respect to � the mean 

compressor radius, and � is a positive constant.	� (Greitzer B-parameter) is another model 

parameter which is related to the constant tangential speed of the compressor 	 = ��, where � is 

also a positive constant. Ψ��Φ� is known as the steady state compressor characteristic 

(compressor map) which represents nonlinear relationship between the pressure rise at the output 

of the compressor and the mass flow. Typically this map is presented by a polynomial: 

Ψ��Φ� = ��� + � �1 +
�
�
��
�

− 1� −
	
�
��
�

− 1���	                                                                   (3.4) 

Here, � is the compressor characteristic height factor, � is the compressor characteristic width 

factor, and  ��� is shut-off head (see Figure 3.2). Note that in this figure, the compressor map is 

plotted using typical numerical values of model parameters. In experiments, compressors should 

operate in the negative slope area since in region with positive slope rotating stall or surge occurs. 

Φ�(Ψ) is the throttle mass flow coefficient. The throttle can be thought of as a simplified model 

of the power turbine and its characteristic can be given by: 

Φ�(Ψ) 	= 
�√Ψ			                                                                                                                      (3.5) 

where 
� is the throttle gain. The physical amount of throttle opening is determined by the value 

of 
�; large 
� implies an open throttle and small 
� means a closed throttle.  

 

Figure 3.2: Compressor map, �, �, and ���  
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At equilibrium, we have: 

Φ� = Ψ� = 0			                                                                                                                               (3.6) 

�� = � �1 − ��
�

− 1�� −

�
� = 0                                                                                                   (3.7) 

which lead to two equilibria. The first one, ��	 = 0	, corresponds to the compressor being in its 

active operating point (OP). The second one, ��� = 4 �1 − ��
�

− 1��� > 0, corresponds to the 

system being in a fully developed rotating stall. For the second ���, one can obtain the stall 

characteristic Ψ����	of the compressor by considering (3.6), (3.2) and (3.3). Indeed: 

��
�
�	

�

��

−Ψ+Ψ��Φ�− ���

�
�	


− 1� = 0

�

�����
�Φ−Φ�� = 0																																			

� = �� = 4 
1 − ��


− 1��																	

→ Ψ��Φ� = ��0 + � 
1 −
3

2
�Φ
�

− 1� +
5

2
�Φ
�

− 1�3      (3.8)                                                         

Figure 3.3 shows the characteristic map of the compressor (3.1), throttle characteristic 

(3.5) and the stall characteristic of the compressor (3.8) in the same coordinate system. The 

operating point (OP) of the compressor is the intersection of compressor map and throttle 

characteristic. 

 

 

Figure 3.3: Ψ��Φ�, Φ�(Ψ), and Ψ�(Φ) 
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The Jacobian matrix at an equilibrium point where � = 0 can be calculated as below:  

��������|��� =

��
��
��� − � ��



− 1�� 0 0

−
��

���
��


− 1� ��

�
��

1 − ��



− 1�� −

�

��

0
�

�����
−

�

�����√���
��
��
                                                 (3.9) 

The first eigenvalue of the matrix given by: 

�	 = � �1 − ��
�

− 1��� = � �
�
�2 −

�
�
�  

It can be seen that �	 < 0 for all Φ > 2� and when Φ = 2�, the OP is at the peak of 

compressor map (Φ�, Ψ�). With the typical numerical values of model parameters in Table 3.1, 

(Φ�, Ψ�)=(0.5,0.66) for a throttle gain 
� = 0.615.  

Other eigenvalues can be found from the following equation: 

�� −
��
��
�

�1 − ��
�

− 1���� �� +
��

���
�√�
� +

	
���
��

= 0  

�� + � � ��
���
�√�

−
��
��
�

�1 − ��
�

− 1���� +
	

���
��
�1 −

��
��

�1 − ��
�

− 1��� ��
√�

� = 0  

Here, if �1 − ��
�

− 1��� < 0 	→ 	��(��),������ < 0 which means that all of OPs on the 

negative slope portion of compressor map (i.e. Φ > 2�) are stable. It is obvious that the position 

of ��, �� depend on many factors among them 
�	and	�. One can use the numerical bifurcation 

packages to trace the variation of eigenvalues due to the variations of parameters. The locus of �� 

and ��, which is affected by the choice of parameters, determines the type of bifurcations and the 

developed instabilities (e.g. Hopf bifurcation in deep surge, when 
� is small and � is high 

enough). Figure 3.4 shows how the number of OPs and the their stability vary when one closes 

the throttle (i.e. 
� decreases, further information is provided later). 
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Figure 3.4: Stable OPs: Bold curves, Unstable OPs: Dashed curves 

3.2 Surge and Rotating Stall Simulation 

 Figure 3.5 explains the development of rotating stall. Suppose that the system is initially 

at a stable OP (1) where � = 0. A disturbance can force the system to move toward the unstable 

area (OP (2)) where rotating stall initiates and the system jumps to fully developed stall OP (3) 

where � > 0. At this working point the pressure rise is dramatically reduced. By opening the 

throttle, the flow increases but the system cannot immediately return to OP (1) until OP (4) where 

the throttle characteristic is tangent to the stall characteristic and the system then jumps back to 

OP (1). 

 

Figure 3.5: Rotating Stall Formation 
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There exists a severe hysteresis between the steady axisymmetric flow and the fully 

developed rotating stall OPs. The hysteresis can prevent systems from returning to the stable area 

when one tries to clear rotating stall by opening the throttle. This hysteresis is recalled again in 

greater detail in the bifurcation analysis of MG3.  

Figure 3.6 shows an example of deep surge: at OP (1) the flow becomes unstable and 

cycle starts and the compression system jumps to OP (2) where the flow is negative. Then, the 

system descends until OP (3) where the flow is negligible. At this OP the system jumps very fast 

to OP (4) with a positive flow and then moves again toward OP (1) and the cycle continues. 

Time domain simulations of MG3 clarify its behavior which depends on the choice of 

parameters. If 
� < 0.615, by setting	� = 0.1, which corresponds to a low rotor speed, the 

compressor goes into fully developed rotating stall, but by setting � = 1, which corresponds to a 

high rotor speed, the compressor initiates surge. Figures 3.7 and 3.8 show simulation results for 

fully developed rotating stall and deep surge respectively. As Figure 3.7 shows, in the case of 

rotating stall, � grows and the output pressure dramatically decreases. This pressure drop spells 

operational problems for the compressor. In Figure 3.8, the direction of the flow periodically 

changes and consequently causes the pressure fluctuation at the output of the compressor. During 

flow reversal, hot gases return to the compressor and damage the mechanical parts. 

 

Figure 3.6: Deep surge cycle  
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Figure 3.7 Fully developed rotating stall B=0.1 

 

Figure 3.8 Deep surge B=1  
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3.3 Bifurcation Analysis of MG3 

Most studies on the bifurcation analysis of the Moore-Greitzer model [48-51] in open-

loop and closed-loop systems point out the effects of the throttle gain as a bifurcation parameter. 

Here, the bifurcation diagram of the squared amplitude of rotating stall � is reviewed. Figure 3.9 

shows the stable and unstable solutions for low �-parameter values (e.g. � = 0.1). The attracting 

and repealing zones of manifolds are also emphasized by arrows in the figure. The bifurcation 

point (BP) in this figure is a subcritical pitchfork bifurcation implying a severe hysteresis in the 

behavior of the system. The system behavior in the interval between the limit point (LP) and the 

bifurcation point (BP), which takes on a considerable importance, is explored below.  

 For all throttle gains greater than LP, starting from every initial stall value (e.g. an 

external perturbation) ends up with fully damped out rotating stall. By decreasing the throttle 

gain to a value between LP and BP, stall may be generated or damped out depending on its initial 

value. Here, OP (A) is an effective OP but OP (C) is a fully developed rotating stall. OP (B) is an 

unstable OP. Figure 3.9b shows how the throttle characteristic intersects with the compressor 

map and the stall characteristic in three points (A, B and C). If the throttle gain is less than BP, 

stall is generated for all initial stall values.  

 

Figure 3.9 Bifurcation diagram of MG3 for low �-parameter values  

(Bold lines: Stable manifolds, Dashed lines: Unstable manifolds) 
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which throttle characteristic intersects with the compressor map and stall characteristic at two 

points including OP (D). 

 The hysteresis can also be seen in the bifurcation curve. Again suppose that the system 

has gone into a fully develop stall condition at OP (C) on the upper solution where � > 0. One 

may want to remove the stall by opening the throttle. The flow increases but the system cannot 

immediately return to the active area until when the throttle curve is tangent to stall characteristic 

(LP in bifurcation curve) where the OP jumps to a fully damped out stall manifold corresponding 

to OP (A).  

 Another important phenomenon is the presence of a Hopf bifurcation point. This mainly 

depends on the value of �-parameter. The Hopf bifurcation point can only be seen for higher 

values of � (e.g. � = 2) where points � appears in the bifurcation diagrams and shows the 

inception of surge (see for more details [37, 139, 142]). 

 In Figure 3.10, all trajectories starting from an initial point in zone A converge to the fully 

developed stall manifold and all trajectories starting from an initial condition in zone C converge 

to fully damped stall conditions. In zone B, all trajectories starting from this area converge to a 

limit cycle reporting deep surge.  

 

 

 

Figure 3.10: Bifurcation diagram for MG3 (high values of B-parameter)  
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3.4 Impact of Rotating Stall High Order Harmonics 

As mentioned earlier, MG3 as a lumped parameter model considers only the first mode of 

rotating stall dynamics, but rotating stall can be thought of as a perturbation consisting of 

different harmonics. In 1994, Mansoux et al.[40] found that higher order harmonics of rotating 

stall can dominate and temporarily become larger than the first harmonic during the stall 

inception. Leonessa et al. [143] then emphasized the particular importance of higher order 

harmonics in a realistic control law design. They showed that using a stabilizing recursive 

backstepping controller based on the one mode Moore-Greitzer model cannot guarantee the 

global stability of the multi-mode case and drives the system to a fully developed stall.  

Furthermore, the Moore–Greitzer model does not consider the time lag between flow 

perturbation across the compressor and the development of the perturbation in pressure rise. This 

problem was investigated further in [89]. An interesting fact is that such time lag stabilizes the 

high-order spatial modes to a greater extent than the lower ones. Consequently, only a small 

number of spatial modes require control action to be suppressed. Another key issue which affects 

the higher order harmonics is the gas viscosity. The gas viscosity was first introduced in the 

Moore-Greitzer model by Adomatis and Abed [42] and its effects were investigated by Gu et al. 

[37] and Hendrickson and Sparks [48]. Adomatis and Abed [42] demonstrated that the large 

velocity gradients associated with higher modes will be damped out by viscous effects. They also 

studied the important effects of viscosity on the bifurcation behavior of the modified model.  

Roughly speaking the number of stall modes is determined by the gas viscosity. Without 

viscosity, all the modes would have the same amplitude in fully developed rotating stall. The 

impact of viscosity on the qualitative behavior of VSACs will be discussed in detail later in the 

next chapter. 

Figure 3.11 demonstrates the growth of higher order harmonics during the fully 

developed stall inception. It is also shown that the second, third, and forth harmonic temporarily 

dominate the first one. This outcome is generated by a simulation of a multi-mode Moore-

Greitzer model where although the effect of higher harmonics is included, the speed is constant.  
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Figure 3.11: Contribution of higher harmonics of rotating stall up to 5th during the stall inception 

3.5 Gravdahl’s Model for VSACs 

In this section, Gravdahl’s model for VSACs is recalled. As discussed before, the stability 

of compressors and the influence of speed transitions on the compression dynamics are of great 

importance especially in aeronautics. In the original MG3 model and its higher order harmonics 

extensions, although �-parameter is proportional to the compressor speed, it is constant. The 

model developed by Gravdahl [46, 47] considers the speed of the rotor as a state variable. The 

model also includes the higher order harmonics of rotating stall and the gas viscosity as a model 

parameter. The compression system consists of an inlet duct, inlet guide vanes IGV, variable 

speed axial compressor, exit duct, plenum volume and a throttle (as shown in Figure 3.1). 

Gravdahl developed the model in the form of:  � = !� ,"��		where  = (Φ, Ψ,�, �	 … � )� and "�		is the non-dimensional drive torque used as an input to change the speed. The variables Φ, Ψ 

represent, as in MG3, the annulus averaged mass flow coefficient and the non-dimensional 

plenum pressure respectively. �	 … 	�   are the squared amplitudes of  rotating stall’s harmonics 

and �, the new added state, is the speed of the rotor. 

 The following equations (3.10)-(3-13) introduce the model (See [46, 47] for further 

details). 

Φ� =
�


�(�)
�−

�!"��

�
+ 1 +

�
�
��
�

− 1� �1 −

�
� −

	
�
��
�

− 1�� −

�#	$%

&�

Φ�                              (3.10) 

Ψ� =
%�	
�
�Φ − Φ�� − 2"#	�Ψ                                                                                                  (3.11) 
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�� = #	��("� − "�	)                                                                                                                   (3.12) 

��( = �( �1 − ��
�

− 1�� −
�
�

−
)(��
�*�

−
�#	$%
+,!	-�

�&�(
� �*�(
+(!,�(�)*-�

                                       (3.13) 

$ = 1,2, … ,% 

	�(  is defined as the squared amplitude of the nth harmonic of rotating stall and 

� =
	
 
∑ �(			 
(.	                                                                                                                           (3.14) 

Here, all derivatives are calculated with respect to a normalized time 	': = 	( �)  where  ( is the 

actual time, � is the mean compressor radius, and 	 is the constant compressor tangential speed. 

	"�	 the non-dimentional compressor torque is given by: 

"� = −���(�$*	& − (�$*�&�                                                                                                   (3.15) 

where *	& and *�& are constant blade angles at the rotor entrance and exit respectively [14]. 

In the model	#	,	#�, �, �, and � are constant. 

In order to study the effects of speed variations on the system behavior, a simple 

proportional speed controller of the form "� = ���	� − 	�	is used in Gravdahl’s model to 

increase the speed of the rotor. 	In this equation 	� is the desired velocity of the wheel and �� is a 

gain defining the rate of the acceleration. Higher (lower) �� leads to faster (slower) rates of speed 

variations. The difference between rotor speed 	 and desired speed 	� drives the system toward 

the final steady speed. As before the compressor speed 	 and � are related (i.e. 	 = ��	where �	is a constant).  

Here, �� and +� depend on the speed of the rotor as follows: 

+�(�) = �1 − +� #	

&�
− 1                                                                                                         (3.16) 

����� = �/ + �0 #	

&�
+
	
*
	                                                                                                              (3.17) 

where + is the compressor duct flow parameter (+ = 1 for a very short exit duct, and + = 2 

otherwise). All distances are nondimensionalized with respect to � (the mean compressor radius) 

and �/ =
�
�

, �0 =
��
�

 (see ,/ and ,0 in Figure 3.1).  
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 In this model, the effect of viscosity is taken into account by including the - parameter. 

The compressor map and the throttle characteristic are considered as (3.1) and (3.5) respectively.  

3.6 Speed Variations and Temporary Stall Developments in VSACs 

Gravdahl’s model not only captures the previous behavior of MG3 such as surge and 

rotating stall developments but also introduces some novel phenomena such temporary stall 

development during speed variations.  

 Gravdahl briefly studied the temporary stall development as an exclusive qualitative 

behavior of the model by preforming limited time-domain simulations [47]. The simulation 

showed that during speed transitions, amplitudes of rotating stall harmonics increase temporarily. 

Note that for the selected OP and the final speed (e.g. 
�	 = 0.65	and � = 2.2), MG3 does not 

imply any rotating stall development since the OP is situated in the safe area by an adequate 

margin to the unstablilities. This temporary growth of stall harmonics causes a pressure drop at 

the output of the compressor and disturbs the normal operation of the gas turbine.  

 In Figure 3.12 two different acceleration rates are studied. In both cases, although the 

initial OP is located in the safe area far from unstable zone, the amplitude of rotating stall is 

temporarily increased due to speed variations. During these speed variations, the output pressure 

decreases. For the higher acceleration rates, the pressure drop is higher. Simulations show that 

this stalling can be avoided by accelerating the compressor at a lower rate or in other words by 

using a smaller	�� , but this may not satisfy the speed variation requirements. 

Table 3.1: Numerical values used in simulations and bifurcation analysis 

Symbol Value Symbol Value Symbol Value � 0.1 �� 3 - 0.01 .1 1.5 �� 8 ��� 0.3 � 0.3 �� 2 � 0.25 �� 340 � 1.75 � 0.18 � 1.15 � 0.03 
���	�� − ���	�� 0.7 /� 0.01 B 0.1, 2.2 #	 2.168e-4 #� 0.0189   
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Figure 3.12: Temporary stall growth and pressure drop during speed transitions for two different 

acceleration rates		�� even far from unstable zone (Red: high acceleration, Blue: low acceleration) 

 

In two next chapters, we provide a detail bifurcation analysis of Gravdahl’s model for 

VSAC. Results reveal the impact of parameter variations on the model instabilities. Time-domain 

simulations not only corroborate the bifurcation analysis but also shows novel transient behavior 

of the model which is not explored before. 
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CHAPTER 4  

QUALITATIVE BEHAVIOR OF VARIABLE SPEED AXIAL 

COMPRESSORS 

4.1 Introduction 

Despite the great importance of variable speed axial compressors (VSACs), detailed 

model analysis and stabilizing control design have remained a challenging problem. In this 

chapter, we focus on the qualitative analysis of the Gravdahl model for VSACs. To this end, we 

first investigate the developed nonlinearities by exploring the stationary and periodic solutions of 

the model. Next, we analyze the impact of parameters such as the throttle gain and the 

acceleration rate on both the transient and steady–state response of the compressor. The effect of 

initial and desired (final) speed on developed instabilities is studied as well. This detailed model 

analysis leads to a better understanding of feasible control approaches in next chapters. 

4.2 Methodology  

Here, our main objective is to carry out a detailed bifurcation analysis to determine how 

model dynamics depend upon the choice of parameters. In order to study the structural stability 

of the model, we employ numerical bifurcation analysis method as a standard approach by using 

MATCONT [144] and AUTO [145], two packages based on continuation method. The outcome 

of the bifurcation analysis is also corroborated through a set of time-domain simulations. This 

multi-method approach allows us to validate our results.  

Bifurcation refers to the appearance of a topologically nonequivalent phase portrait under 

the variation of parameters. The parametric portrait together with phase portrait for each state 

constitutes a bifurcation diagram [146] (See Appendix A and B for more details). In Chapter 3.3, 

we briefly presented the bifurcation diagrams of MG3 and described the stationary and periodic 

solutions corresponding to stall and surge respectively. In most studies on bifurcation analysis of 

the Moore-Greitzer model [48-51], the effects of the throttle gain as a bifurcation parameter on 

stall dynamics are addressed. Gu [147] and Ananthkrishnan [139] demonstrated the presence of a 

Hopf bifurcation point (H in Figure 3.10) which indicates the onset of surge for high B-parameter 
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values (see also [142]). Gu [37] also developed the bifurcation diagram of deep surge dynamics 

and demonstrated the dependence of the Hopf bifurcation point on the B-parameter value.  

For bifurcation analysis of VSAC’s model, we consider Gravdahl’s Model recalled in the 

Chapter 3.5 by (3-10)-(3-13) and consider only the first harmonic of the rotating stall. The 

investigation of the stationary and periodic solutions of the model reveals that the acceleration 

rate significantly affects the steady state behavior in addition to the transient response. For this 

reason, the acceleration rate is viewed as a novel bifurcation parameter. Furthermore, the 

continuation of critical points such as Hopf bifurcation points demonstrates that the desired speed 

deeply affects the qualitative properties of the model. In addition to these new findings, time-

domain simulations indicate that the initial speed is yet another key factor having considerable 

influence on the developed nonlinearities. This shows that incorporating spool dynamics in the 

model leads to a far richer dynamical behavior than that of MG3. All of numerical values, which 

are used in this study, are provided in Table 3.1. 

4.3 Stationary and Periodic Solutions  

The specific objective of this section is the study of stationary and periodic solutions of 

the model by depicting the bifurcation diagrams. This is mainly performed by AUTO and 

verified by Matcont. Operational considerations lead us to treat the throttle gain as a natural 

bifurcation parameter. Other model’s parameters such as viscosity and the acceleration rate can 

modify the qualitative behavior of the system as well. The location of manifolds and the diversity 

of bifurcation points highly depend on the acceleration rate and the desired speed value which 

define the speed dynamics. Another key factor affecting the system responses is the initial speed.  

Figure 4.1 shows the bifurcation diagrams of the model including the stationary and 

periodic solutions for three different values of the desired speed 	� while the acceleration rate �� 
and the initial speed 	� are kept constant (the impacts of these parameters are explored in sequel). 

In this figure, stable and unstable solutions are respectively depicted by bold lines and dashed 

lines. A reasonable range of the throttle gain as the main bifurcation parameter is covered. Figure 

4.1a shows the bifurcation diagram of the first harmonic of stall when 	� = 10. In this case, no 

periodic solution exists. Stable stationary solutions include the fully developed rotating stall and 

no stall manifolds. When the throttle gain is more than 0.64, there is only one stable no stall 
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manifold (black-bold). This corresponds to the active operation of the compressor. When the 

throttle gain is between 0.615 and 0.64, the convergence toward fully develop stall or no stall 

stable manifold depends on the initial condition. If the system initially starts from the shaded 

area, it converges to no stall manifold; otherwise it leads to a rotating stall. Finally, when the 

throttle gain is less than 0.615, the only stable manifold is fully developed stall (green-bold). 

Therefore, starting from every initial value of stall amplitude, the system converges to fully 

developed stall which leads to a reduction in output pressure. In Figure 4.1b, the bifurcation 

diagram of the first harmonic of stall is depicted for 	� = 65. A periodic solution (red manifold) 

starts at the first Hopf bifurcation point HB1 where 
� = 0.613. At this point, the equilibrium 

point loses its stability as a pair of complex conjugate eigenvalues of the linearization cross the 

imaginary axis of the complex plane. The stable part of this periodic solution approaches a 

homoclinic orbit when the throttle gain increases. Around this homoclinic orbit, the period 

becomes very large and continuation fails to converge.  

The corresponding time-domain simulation result depicted in Figure 4.2 corroborates the 

presence of this periodic solution. The trajectory of the system in flow and pressure rise plane is 

depicted in Figure 4.2a and the oscillations of flow, pressure rise, and the first harmonic of stall 

are shown in Figure 4.2b, Figure 4.2d, and Figure 4.2e respectively. In contrast with other limit 

cycles which will be discussed later, the period of oscillation is large in this case (about 600). The 

final value of speed 	� = 65 corresponds to � = 0.67 which is shown in Figure 4.2c.  

Higher desired speed values (e.g. 	� = 100) drastically change the qualitative behavior 

of the model. The presence of new periodic families (red and blue) corresponding to deep and 

mild surge is among these changes. These periodic solutions starting at the second Hopf 

bifurcation point (HB2) are depicted in Figure 4.1c. They can be categorized into two families. 

The first one (bold-blue manifold) shows a stable limit cycle of mass flow and the pressure rise 

where the amplitude of stall is zero. This manifold corresponds to surge. The other family (red 

manifold) is a periodic solution of rotating stall which is partially unstable (dashed). This 

manifold finally changes to a stable periodic solution where the amplitude of stall is not zero.  

Further details are given in Figure 4.1f where the stable periodic orbits of surge are clearly 

indicated on the bifurcation diagram of flow. The corresponding manifolds with Figure 4.1c are 

depicted with the same color and style in Figure 4.1f. These manifolds show the maximum 

amplitude of flow oscillations (which is obviously not zero).  
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Figure 4.1: Periodic orbits (blue and red) and stationary solutions (black and green) of the model 

for �� = 1, Bolds show stable and dashed lines show unstable manifolds.  

	� = 10	in a), d), 	� = 65 in b) and e), and		� = 100 in c) and f) 
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Figure 4.2: Limit cycle of first harmonic of stall 	� = 65, �� = 1	and	
� = 0.61	 
 

Figure 4.3a is added to clearly identify three different oscillations pertaining to Figure 

4.1f. The first one is deep surge leading to flow reversal (pointed out as a part of bold-blue 

manifold). The second one is mild surge where the oscillation does not imply flow reversal and 

the amplitude of rotating stall is zero (indicated as mild surge1). Finally, the third periodic family 

(indicated by mild surge2) does not cause flow reversal as well but it results in the rotating stall 

oscillation. The period of the oscillations in this case is higher than the two previous cases. Figure 

4.3b shows the period of deep and mild surges. The time-domain simulations of deep surge and 

two different mild surges are shown in Figure 4.4, Figure 4.5, and Figure 4.6 respectively. 

It is worth noting that the bifurcation diagrams of Gravdahl’s model are significantly 

different than the bifurcations of MG3. The differences naturally arise from the dimension of the 

parameter space. Bifurcation diagrams of Gravdahl’s model should be depicted in a multi-

parameter space including the acceleration rate and the throttle gain, whereas the bifurcation 

analysis of MG3 is performed when only the throttle gain varies [139, 148]. Therefore the 

depicted diagrams here are only a slice of the multi-parameter bifurcation space.  

In the next section, to avoid practical difficulties of the bifurcation analysis in a multi-

parameter space, we carry out the analysis of the model in different two-parameter spaces. 
.            

  

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flow 

P
re

s
s
u

re
 R

is
e

 

 

 

Compressor Map 

Stall Characteristic

Throttle Characteristic

System's Trajectory

a)

0 2000 4000
0

0.5

1

time

F
lo

w

0 2000 4000
0

0.5

1

time

P
re

s
s
u

re
 R

is
e

0 2000 4000
0

0.5

1

time

S
p

e
e

d

0 2000 4000
0

1

2

3

4

time

F
ir
s
t 
H

a
rm

o
n

ic
 o

f 
S

ta
llb) d)

e)c)



40 

 

 

Figure 4.3: Mild surge and deep surge periodic solutions 	� = 100	and �� = 1 

 

Figure 4.4: Deep surge including flow reversal		�� = 100,�� = 1	and	�� = 0.56 

  

Figure 4.5: Mild surge without flow reversal and stall oscillation	�� = 100,�� = 1	and	�� = 0.58 
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Figure 4.6: Mild surge without flow reversal including stall oscillation �� = 100,�� = 1	and	�� = 0.58 

4.4 Bifurcation Analysis in 2-parameter Space 

In the previous section, we provided the bifurcation diagrams of the model for the 

different desired speeds. Here, we study the persistence of critical points of the bifurcation 

diagrams due to the variation of a second parameter. 

Normally, when a parameter passes a fold (limit point) the behavior of the system can 

change drastically. Thus it is useful to determine how the location of a fold changes when a 

second parameter varies [149]. Another point presenting a change in the nature of the solution is 

a Hopf bifurcation point where an equilibrium loses its stability. The persistence of a Hopf 

bifurcation due to the variation of a second parameter is also of great importance in system 

analysis and control design. In this section, we compute critical stability curves or the loci of fold 

and Hopf bifurcation points in 2-parameter space. Two accepted methods are employed here to 

present the effect of a second bifurcation parameter. Firstly, we trace the solution families for 

different values of the second parameter and show the qualitative changes.  Secondly, we 

compute the continuation of critical points due to the variation of the second parameter and point 

out the qualitative changes. Along the way, time-domain simulation is again used to validate the 

bifurcation analysis results. 

4.4.1 Impact of the Acceleration Rate 

The proportional controller gain, which initially introduced by Gravdahl [47] to increase 

the speed of the compressor, is considered as a model parameter in this study. This parameter is 
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referred to as acceleration rate �� and defines the rise time of the speed transitions and deeply 

affects the speed dynamics. The main objective of this section is to show that the acceleration rate 

can modify the bifurcation diagrams and changes the qualitative behavior of the system. 

Obviously, this is a case-dependent parameter meaning that a new speed control method 

can completely change the parameter definition. However in the case of other speed controllers, 

the speed dynamics behaves in the same way and makes it possible to follow the same approach 

as applied here to study the effect of the controller on the qualitative behavior of the system.  

 Figure 4.7, which is depicted for two different acceleration rates and desired speeds, 

shows that the variation of the acceleration rate changes the bifurcation points and also modifies 

the form of the manifolds. These can change the behavior of the system in different ways, 

including the type and the range of instabilities and the relevant domain of attractions as well. 

The deformation also indicates that the amplitude of fully developed stall and the amplitude of 

the limit cycles corresponding to surges vary due the acceleration rate variations. A set of time-

domain simulations also emphasizes the impact of speed dynamics and the acceleration rate.  

Figure 4.8 presents time-domain simulations for the specific values of the acceleration 

rate and initial speed 	�. This figure demonstrates that initial speed 	� also has considerable 

influence on the behavior of the system. The throttle gain is kept constant during these 

simulations. The desired speed is 	� = 60 for simulations a, b, and c, and 	� = 165 for 

simulations d, e, and f. As Figure 4.8a shows, the system initially goes into fully developed 

rotating stall when �� = 1 and 	� = 2.  By increasing the acceleration rate to �� = 15 while 

keeping 	� constant, the system goes into deep surge as demonstrated in Figure 4.8b. This 

phenomenon shows a qualitative change in the model characteristics depending on the rate of the 

rotor acceleration. To describe the importance of the initial speed, we only modify the initial 

speed 	�	in the third simulation (Figure 4.8c). The developed deep surge in Figure 4.8b has 

disappeared in Figure 4.8c where the initial speed is higher 	� = 30. 

Similarly, Figure 4.8d and 4.8e show that a deep surge condition changes into fully 

developed rotating stall because of a slow acceleration rate. In Figure 4.8d, the system is driven 

to a deep surge condition due to the selected values of the desired speed 	� = 165 , initial speed 	� = 2 , and the throttle gain  
� = 0.45 . In Figure 4.8e, we decrease the acceleration rate while 

keeping the other parameters constant. Although the desired speed is the same as before, the 
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system goes into fully developed rotating stall due to the slow acceleration. Again, an increase in 

the initial speed (	� = 75) causes that fully developed rotating stall in Figure 4.8e to change to 

deep surge in Figure 4.8f. 

 

 

 

 

 

 

 

 

Figure 4.7: The impact of the acceleration rate on the bifurcation diagrams.  

a), b): 	� = 165 ,  c), d):		� = 65 

Black: periodic and stationary solutions for �� = 0.1 

Red: periodic and stationary solutions for �� = 30 
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Figure 4.8: Effect of the acceleration rate (��) and initial speed (	�) on instabilities 

Blue: Compressor map, Red: Throttle characteristic �
�	 = 0.45� , Black: Stall characteristic, 

Green: System trajectory 

a) �� = 1, 	� = 60,		� = 2, b) �� = 15, 	� = 60,		� = 2, c) �� = 15, 	� = 60,		� = 30 

d) �� = 1,	� = 165,		� = 2, e) �� = 0.1, 	� = 165,		� = 2, f) �� = 0.1, 	� = 165,		� = 75 
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Sensitivity to the initial speed can be explained in term of the domain of attraction. Figure 

4.9 shows two different initial conditions in the state space of the system. By starting from the 

initial speed 	� = 45, the system converges to a deep surge while by initializing the system speed 

at 	� = 2, system converges to a fully developed rotating stall. In both cases the desired speed, 

the throttle gain, and the acceleration rate remain constant. 

4.4.2 Effect of the Desired Speed  

Another factor, which modifies the depth of speed transition and consequently affects 

speed dynamics, is the desired speed. Study on the effect of this factor was partially performed in 

MG3. In MG3, B-parameter involves the desired speed in the model without including the speed 

dynamics during the transition. First of all the impact of high and low value of B-parameter were 

indicated by surge and stall development respectively [36]. Then, the variation of B-parameter in 

the high value range was investigated [37, 139] to show its effect on the inception of surge. In the 

sequel, we study the effect of the desired speed 	� as the second bifurcation parameter of the 

Gravdahl model. 

 

 

Figure 4.9: Effect of initial speed on the qualitative behavior of the system 

 �� = 0.1, 	� = 165	, 	��	 = 2 and 	��� = 45.  

(Deep surge: Blue trajectory, Rotating Stall: Red trajectory) 
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Figure 4.10 displays the bifurcation diagram of the mass flow. In this figure, the second 

Hopf bifurcation point (HB2) shows the inception of surge where the corresponding periodic 

solution begins. A family of this periodic solution is depicted for different values of the desired 

speed (when 	� varies from 105 to 165). By increasing the desired speed, surge is initiated in 

higher values of the throttle gain. Higher desired speeds also imply higher oscillation amplitudes. 

The variation of this parameter does not influence the position of the branch point (BP) or the 

limit point (LP) and does not cause any deformation in contrast to the effect of the acceleration 

rate. To study the movement of Hopf bifurcations due to the desired speed variation, the 

continuation of Hopf bifurcations is also calculated by AUTO. In this case, AUTO firstly 

computes the stationary and periodic solutions and then starts from bifurcation points being 

indicated as Hopf and varies the second parameter in the specified range. The new position of the 

Hopf bifurcation point is depicted at the same time. In Figure 4.11, the L2-Norm of states clearly 

shows the variation of the first and second Hopf bifurcation points when the desired speed 

gradually increases (dashed blue lines). HB1 shows the point where the unstable fully developed 

rotating stall equilibrium changes to a stable equilibrium. Throttle gains less than this value can 

lead to a stable fully developed rotating stall depending on the initial values of the system.  

 

 

Figure 4.10: The impact of the desired speed on the position of HB2, left to right the desired 

speed is increasing (	� = 105,125,145,165) 
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Figure 4.11: Continuation of Hopf bifurcation points (dashed-blue) when the desired speed as the 

second bifurcation parameter varies from 40 to 185 

4.5 Conclusion 

Aside from the theoretical and practical interest of the research about the performance 

limiting phenomena (surge and stall), an in-depth model analysis can help us to reject the 

infeasible control approaches and improve the formulation of the control design in next chapters. 

In this chapter, we focused firstly on the investigation of the developed nonlinearities in VSACs. 

Our results showed a richness of the model dynamics in comparison with the constant speed 

MG3. Bifurcation analysis based on continuation methods indicated new periodic solutions of 

mild surge and stall oscillation, however, the main contribution of the chapter is about the impact 

of speed transition. The detailed bifurcation analysis in a 2-parameter space revealed that the 

qualitative behavior of the system mainly depends on speed dynamics. Meanwhile, speed 

dynamics globally affecting the system are influenced by key factors such as the acceleration 

rate, the desired speed, and the initial speed.  

The acceleration rate changes the rise time of the compressor speed and modify the 

bifurcation diagrams as a novel bifurcation parameter. It not only moves the critical points, but 

also deforms periodic and stationary solutions. This implies that surge or stall developments take 

place according to the way the speed of compressor varies. Time-domain simulations corroborate 

this hypothesis and show that slow or rapid speed variations can change the developed 

nonlinearities. We finally investigated the effect of the desired speed and the initial speed to 
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complete our study about the impacts of speed dynamics. These two key factors change the range 

of speed variation and modify the system behavior.  

Next chapter will particularly concentrate on the contribution of higher order harmonics. 

As initially presented in Chapter 3, higher harmonics can temporarily dominate the main 

harmonic during speed transition. Chapter 5 explores also the impact of speed dynamics on the 

harmonics growth and rightly emphasizes the need for a multi-mode controller eliminating all 

modes of rotating stall. 
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CHAPTER 5  

CONTRIBUTION OF ROTATING STALL MODES IN THE DYNAMICAL 

BEHAVIOR OF VARIABLE SPEED AXIAL COMPRESSORS 

5.1 Introduction 

Since compressors are variable speed machines, it is of interest to investigate the 

influence of speed transients on the system behavior and particularly on the higher order 

harmonics.  Gravdahl’s model for VSAC presented in Chapter 3 includes multi-modes of rotating 

stall and compressor speed as the states. The importance of higher order harmonics, which was 

explored in the literature for CSACs [40, 42, 143], has been an open problem for VSACs. The 

early work of Gravdahl [47] briefly addressed the qualitative properties of the model by 

performing time-domain simulations without exploring the contribution of rotating stall modes. 

This chapter stressed the need for detailed model analysis to assess the high-order modes 

dynamics of rotating stall. Gravdahl also suggested a novel multi-mode control design being 

capable of achieving fast speed transition and actively suppressing rotating stall as future work.  

For the first time, the investigation of the transient behavior of Gravdahl’s model reveals 

that the choice of parameters can change the amplitude of stall modes. Acceleration rate, desired 

speed, and initial speed as main factors determining speed dynamics can also significantly 

influence the number of dominant harmonics during temporary stall inception. Furthermore, the 

continuation of critical bifurcation points demonstrates that viscosity greatly changes the 

qualitative properties of higher modes of stall. These findings show the richness of the dynamical 

behavior that lies beyond the complex form of the model including the spool dynamics.  

5.2 Methodology  

The problem is to investigate the multi-mode rotating stall dynamics and to detail the 

involved key factors. To conduct this model-based study, Gravdahl’s model for VSACs being 

recalled in Chapter 3.5 by (3-10)-(3-13) and the numerical values in Table 3.1 are used here. Our 

main objective is to investigate the effect of speed dynamics, which are deeply affected by the 

choice of parameters, on the multi-mode rotating stall dynamics. In order to explore the key 

issues of concern, numerical bifurcation and time domain simulation are both used. In this work, 
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MATCONT [144] and AUTO [145] packages based on continuation method are employed to 

study steady state behavior of the system and a set of time-domain model simulations is 

performed to investigate the transient response of the model. 

5.3 Impact of Speed Dynamics on the Contribution of Stall Modes 

In the previous chapter, the review of the bifurcation diagrams formed a novel hypothesis 

that the involved parameters of speed dynamics can modify the transient response of the model. 

Here, we test this hypothesis by performing a set of time-domain simulations. Among the model 

parameters, the desired speed and the acceleration rate directly modify the speed dynamics. The 

initial speed is another key factor which determines the range of speed variations and changes the 

system trajectories. Furthermore, we include the effect of throttle gain as the main bifurcation 

parameter of the model to complete our study. Four sets of time-domain simulation are 

performed to achieve this goal. Figures 5.1, 5.2, and 5.3 show the impact of the acceleration rate 

on the amplitude, and on the number of dominant stall modes temporarily developed during 

speed transitions. These figures are depicted for different values of the acceleration rate �� while 

other parameters are kept constant (	� = 165, - = 0.01, 	� = 1, and 
� = 0.65). The results 

show that higher �� increases the amplitude of stall modes. The number of higher harmonics, 

which dominate the main harmonic, is also increased for higher ��. Consequently, the output 

pressure drops more dramatically for the case of rapid speed variation. Figures 5.1e-5.3e show 

that the operating points are adequately far from unstable area throughout the simulations. It is 

worth noting that slow speed variation yields an infeasible solution to temporary stall 

developments and pressure drops in many applications such as aeronautics. 

 

Figure 5.1: Dominant stall modes for temporary stall development �� = 8	 
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Figure 5.2: Dominant stall modes for temporary stall development �� = 1 

 

Figure 5.3: Dominant stall modes for temporary stall development �� = 0.5 

The desired speed is another involved factor which changes the range of speed variation 

and modifies speed dynamics as a result. The impact of the desired speed on the contribution of 

temporary developed stall modes is studied in Figure 5.4 where all of other parameters are 

constant (�� = 2, - = 0.01, 	� = 1, and 
� = 0.65). In Figure 5.4, the harmonics of rotating stall 

up to the 5th harmonic are depicted. Lower desired speeds dictate lower amplitude of harmonics. 

The number of higher modes dominating the main harmonic is also decreased for lower desired 

speeds. The initial speed can modify the transient response of the model as well. Figure 5.5 

briefly shows the effect of this key factor on the temporary stall development. This figure clearly 

indicates that lower initial values cause higher amplitudes of stall modes and a higher number of 

dominant harmonics. For the simulations of Figure 5.4, all other parameters are kept constant 

(�� = 2, - = 0.01, 	� = 150, and 
� = 0.65).  
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Figure 5.4: the effect of desired speed on the amplitude and number of dominant stall 

harmonics a) 	� = 200, b)		� = 150, c)		� = 100, d)		� = 50 

  

Figure 5.5: The effect of initial speed on transient behavior: a) 	� = 1, b) 	� = 10 
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Last but not least in this section, the effect of throttle gain on the temporary stall 

development is studied. Figures 5.6 and 5.7 show that the higher throttle gain 
�	, which leads to 

work far from stall line, causes lower amplitude of temporary developed stall (other key factors 

are kept constant: �� = 2, - = 0.01, 	� = 150, and 	� = 1. ). The number of dominant 

harmonics is also reduced for the higher throttle gain. Again, an easy solution to deal with 

temporary stall developments and pressure drops is operating far from stall line. However, this 

comes at the expense of performance because at such operating points pressure rise is not high 

enough (compare Figure 5.6e and 5.7e). 

 

 

Figure 5.6: Low throttle gain leads to large number of dominant modes 
� = 0.65 

 

Figure 5.7: High throttle gain leads to a small number of dominant modes 
� = 0.82 
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5.4 Impact of Viscosity on the Stall Modes 

Another key parameter, which affects the qualitative behavior of the system, is gas 

viscosity. This parameter was first introduced in Moore-Greitzer model by Adomatis and Abed 

[42] and its effects were investigated by Gu et al. [37] and Hendrickson and Sparks [48]. 

Adomatis and Abed [42] demonstrated that large velocity gradients associated with higher modes 

will be damped out by viscous effect. In other words, the number of stall modes is determined by 

gas viscosity. Gas viscosity - is also taken into account in the Gravdahl model.  

It is shown here that - is a bifurcation parameter for MG3 since its smooth variation can 

change the qualitative behavior of the model. It can affect both the transient and steady state 

behavior of stall modes in the same way. In sequel, the bifurcation diagrams of stall harmonics 

for VSACs and Gravdahl’s model are studied in a two parameter-space. At first, bifurcation 

diagrams are depicted for throttle gain as the main bifurcation parameter and zero viscosity, then 

the continuation of limit points LP are traced due to the variation of - as the second bifurcation 

parameter (red curves). The loci of limit points indicate that when - increases in a normal range 

(e.g. - ∈ [0	, 0.01]), the nature of the transcritical bifurcation point BP changes from subcritical 

with hysteresis to supercritical without hysteresis for fourth and fifth harmonics (see [150] for 

more information on sub/super critical bifurcations.). In other words the deference between 
�2 

the throttle gain at LP and 
�2 the throttle gain at BP (0
 = 0
�2 − 0
�2), which defines the 

depth of rotating stall hysteresis (see [151] for stall recovery hysteresis), decreases by increasing 

gas viscosity.  

In Figure 5.8, a family of bifurcation diagrams for different values of viscosity is depicted 

for the fifth harmonic of stall. The variation of limit point in Figure 5.8f corresponding with 

Figure 5.8e shows that higher - can lead to fully damped higher order harmonics. This is in 

accordance with known results of constant speed compressors model presented in the literature, 

and is shown here to be also valid for VSACs. 
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Figure 5.8: Continuation of limit point due to the variation of viscosity as second bifurcation 

parameter �� = 1,	� = 165, and		� = 1 
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Figure 5.9: The Growth of gas viscosity decreases the depth of hysteresis 

a) 0
 = 
�2 − 
�2 = 0.03, b)	0
 = 
�2 − 
�2 = 0.015 

The time-domain simulations in Figure 5.9 corroborate through bifurcation analysis 

results. In this figure, 
�2 corresponds to the value of throttle gain where throttle characteristic is 

tangent to the rotating stall characteristic (green curve) and 
�2 corresponds to the value of 

throttle gain where throttle characteristic intersects the stall characteristic at the top of compressor 

map (red curve). By increasing - the depth of hysteresis in Figure 5.9b is decreased. It is worth 

noting that the defined hysteresis in time-domain simulation is due to the average of all stall 

harmonics ( � = 1 %) ∑ �( 
(.	 ). 

5.5 Temporary Rotating Stall Leading to Steady Rotating Stall Development 

As discussed, at operating points far from stall line, temporary stall can finally be damped 

out when the speed reaches the desired value. However, this is not usually the case. In order to 

increase pressure rise and efficiency, the operating point should be selected near the top of the 

compressor map. As is well known, at such an operating point, small perturbation can lead to 

fully developed rotating stall or surge. This conveys the idea that speed variations and 

temporarily developed stall (as a perturbation) threaten the stability of VSACs in efficient 

working points. The dependency of temporary stall amplitude on parameters especially the 

acceleration rate suggests a tightly coupled interaction between throttle gain and the acceleration 
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rate in this issue. In the following, we examine the formed hypothesis by time-domain 

simulations.  

Figure 5.10 shows that a slow speed variation cannot drive the system to the unstable 

zone, because temporary stall harmonics are not high enough (maximum 0.2, Figure 5.10e). In 

Figure 5.10a, the trajectory of the system returns to the initial operating point after a while. The 

quickly damped stall is manifested as a negligible temporary pressure drop in Figure 5.10c, 

which is cleared when stall harmonics are completely damped out in Figure 5.10e. Figure 5.10b 

shows speed variations where the slope of the curve depends on the acceleration rate. Harmonics 

of rotating stall (up to 5th) are depicted in Figure 5.10d where the second and the third harmonics 

of stall dominate the first harmonic during the stall inception. Figure 5.11 shows the simulation 

for a rapid speed variation (High ��) that causes high enough temporary stall harmonics and 

drives the system to steady-state rotating stall. The initial speed 	�, the desired speed 	�, gas 

viscosity -, and throttle gain 
� are kept constant for these two simulations (- = 0.01, 	� =

10,	� = 1, and	
� = 0.62). In Figure 5.11a, the system trajectory finally settles down at a new 

operating point (OP) where stall is steadily developed. Figure 5.11d focuses on a dramatic 

pressure drop as the effect of undamped rotating stall.  

Figure 5.12 shows that a small smooth change made to the acceleration rate results in a 

sudden change in the system behavior. The rest of parameters are kept constant (	
� =

0.63,				- = 0.01, 		� = 35, 		� = 2). In Figure 5.12a, for �� ≥ 1.032, temporary stall leads to 

fully developed stall as discussed before. Figure 5.12b shows that for �� ≥ 3.2, stall is damped 

out again. This outcome is supported by the bifurcation analysis in Chapter 4 (see Figure 4.7) 

where the higher acceleration rates shifts the diagrams to the left and causes temporary stall for 
� = 0.63. 
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Figure 5.10: Temporary stall development is damped out �� = 2.5	 

 

Figure 5.11: Temporary stall development causes fully developed stall �� = 5 

 

Figure 5.12: Increasing the acceleration rate results in different stall development 
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The well-known effect of throttle gain and the above results apparently shape a new idea 

about the interaction of throttle gain, the acceleration rate, and the threshold of transient 

perturbation leading to fully developed stall. Figure 5.13 shows this relationship. This figure 

indicates that higher 
� requires higher �� to develop steady stall. For lower 
� however, even a 

slow speed variation leads to steady stall development. In other words, efficient operating points 

(e.g. 
� ≤ 0.62	) are not robustly stable and speed variation easily destabilizes VSACs. In Figure 

5.13, the upward sloping of developed stall recalls that as throttle gain drops, the amplitude of 

developed stall slightly increases.  

 

Figure 5.13 Thresholds of �� for steady stall is influenced by 
�	(- = 0.01, 		� = 35, 		� = 2) 

5.6 Conclusion 

The common use of variable speed axial compressors clearly underlines the need for a 
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key parameters of the model on the stability of the system. Simulation results supported by 
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model show the influence of many parameters such as gas viscosity, throttle gain, the desired 

speed, and acceleration rate.  

This study demonstrated that speed variations at an efficient working point in the vicinity 

of unstable area can lead to fully developed stall causing serious operational trouble. This 

emphasizes the need for a stabilizing multi-mode controller to suppress temporary rotating stall 

developments and simultaneously achieve rapid speed variation in future work.  

This research question is addressed in the next chapters. In Chapter 6, we firstly 

developed a robust controller and show that it can guarantee the boundedness of the model’s 

states in error coordinates. This simple controller tackles the main control design problems of 

CSACs. To improve the control method, in Chapter 7, we explore again the stability of CSACs. 

By using a chattering-free sliding mode controller, we guarantee the asymptotic stability of the 

origin in error coordinates in the presence of external perturbations and model uncertainties. This 

controller is easy-to-implement and does not require full-state feedback. The finding of Chapter 6 

and 7 shed some light on the VSACs’ control design. Finally, in Chapter 8, we introduce a new 

method to simultaneously control speed and nonlinearities in these machines. This controller 

robustly control all of VSACs’ instabilities being explored in chapter 4 and 5. The following 

chapters are submitted as research papers. 
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Abstract: In this work, we address the stability of compression systems and the active 

control of performance limiting phenomena: surge and rotating stall. Despite considerable efforts 

to stabilize axial compressors at efficient operating points, preventing and suppressing rotating 

stall and surge are still challenging problems. Due to certain passivity properties of the widely 

used Moore and Greitzer model for axial compressors, a robust passivity-based control approach 

is applied here to tackle the problem. The main advantage of this approach is that robust 

stabilization and high performance control can be achieved by simple control laws and limited 

control efforts. Analytical developments and time-domain simulations demonstrate that the 

developed control laws can effectively damp out rotating stall and surge limit cycles by throttle 

and close-coupled valve actuations. The robust performance of the controller is validated in the 

presence of bounded mass flow and pressure disturbances, as well as model uncertainties. 

Key words: Passivity-based Control, Axial Compressor, Rotating Stall and Surge Control 

6.1 Introduction 

Passivity theory, which provides an energy based perspective in control theory, has been 

the subject of much research over the last decades [152-154] . The essential role of energy in the 

stability and performance of physical systems has resulted in the increasing attention to passivity. 

Basically, passive systems are a class of processes that dissipate a certain type of physical or 

virtual energy described by Lyapunov-like functions [155]. The concept of passivity especially 

plays an important role in robust control. Since passive systems are easy to control, the first step 

in passive system theory is to render a process passive via either feedback or feedforward. 
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Sufficient robustness to model uncertainties, parameter variations, and external disturbances can 

be ensured by passivity-based control (PBC) which guarantees the passivity of the system for the 

whole range of parameters. Achieving passivity with feedback is an appealing issue due to its 

input-output concept. However, one of the major challenges in feedback passification designs is 

to make it constructive. The key part of the design procedure is to select a proper output 

satisfying the required conditions [152]. In 1991, Byrnes et al. [154] derived the conditions under 

which a nonlinear system can be rendered passive via smooth state feedback and in 2009, Tsai 

and Wu [11] presented a constructive method for robust PBC (RPBC) of a certain class of weakly 

minimum phase nonlinear uncertain systems. They proposed a control law that renders the 

system passive and asymptotically stabilizes the closed loop system; however the perturbations 

were supposed to be vanishing.  

In this work, we utilize RPBC to effectively stabilize nonlinear phenomena in 

compression systems. Compression systems suffer from two types of nonlinearities with different 

natures: surge and rotating stall.  Rotating stall is a non-axisymmetric perturbation that travels 

around the annulus of the compressor, while surge is a violent limit-cycle in compressor 

characteristic that can lead to flow reversal and large axial oscillations (see [37] for more 

information). Despite the considerable efforts that have been made to investigate these 

phenomena, different aspects of the problem such as sensing, actuating and model-based control 

are still challenging issues. 

From a control point of view,  the nonlinear 2D model developed by Moore and Greitzer  

[36] for constant speed axial compressors (CSACs) dominates recent studies on rotating stall and 

surge control [37]. The lumped parameter Moore and Greitzer model (so-called MG3) is based on 

the first harmonic approximation of rotating stall. This model was developed by using Galerkin 

procedure applied to the original PDE form. In spite of the simple form of the model, it can 

capture surge and rotating stall nonlinearities and qualitative behavior of the system including 

bifurcations (see [142] for more information).  

Remarkable efforts channeled into augmenting MG3 in different ways; among them 

obtaining higher order accurate models and including the force of actuators [40, 143, 156]. One 

of the most promising actuators is the close-coupled valve (CCV). The early work of Dussourd in 

1977 [157] and the work of Simon and Valavani in 1991 [124] addressed CCV in compression 
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system control. In 1998, Gravdahl introduced an augmented MG3 model including CCV in error 

coordinates [47]. Recently, once again, this actuator attracted close attention of researchers in 

surge control ([94, 123, 131]).  

Gravdahl demonstrated that the two-state simplified form of MG3 including CCV shows 

certain passivity properties and then applied PBC to develop a surge controller [158]. This simple 

proportional PBC law effectively stabilized surge limit cycles. Although the controller was not 

able to damp out rotating stall, it showed promise for suppressing this hard-to-control 

nonlinearity. This interesting open problem was suggested as future work by Gravdahl and to the 

best of our knowledge it has not been addressed since then. 

Here, we address this problem and design a RPBC to suppress rotating stall in CSACs. 

The simple proportional and low order form of the developed controller is the first advantage of 

the applied method. It is not based on full-state feedback (the square amplitude of rotating stall as 

the third state of MG3 is practically hard to measure) and does not require the detailed knowledge 

of model parameters, which cannot be accurately estimated. The controller actuates the system 

with feedback from mass flow and pressure rise by using both the throttle valve and CCV. 

Furthermore, we relax assumptions on perturbations, which are usually supposed to be vanishing 

([11, 12], by introducing bounded non-vanishing disturbances. Simulation results corroborating 

the analytical developments demonstrate that the applied RPBC effectively damps out the 

developed rotating stall and stabilizes efficient operating points (OPs) in the presence of bounded 

non-vanishing external disturbances and model uncertainties. The utilized approach eliminates 

surge limit cycles as well. 

The rest of the paper is organized as follows. In Section 2, we start by reviewing the 

Gravdahl model representing CSACs comprising CCV. Section 3 presents the control design and 

section 4 reports time-domain simulations. Finally, some conclusions about this work are drawn 

in Section 5. 

6.2 Axial Compressor Model 

Here, we briefly review Gravdahl model for CSACs including CCV and throttle actuators. 

The compressor comprising CCV is shown in Figure 6.1 where the pressure rise over the 

equivalent compressor is the sum of the pressure rise of the compressor and the pressure drop 

over CCV: Ψ���Φ� = Ψ��Φ� − Ψ3�Φ�. Φ is the circumferentially averaged flow coefficient and 
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Ψ is the total-to-static pressure rise coefficient. Ψ��Φ� is known as the compressor characteristic 

(map) which describes a nonlinear relationship (assumed cubic in [47]) between Φ and Ψ: 

Ψ4�Φ� = ��� + � �1 + 1.5 ��
�

− 1� − 0.5 ��
�

− 1���                                                             (6.1) 

Here, � is the compressor characteristic height factor, � is the compressor characteristic 

width factor, and  ��� is shut-off head. The CCV characteristic that describes the pressure drop 

over CCV as a function of flow is given by Ψ3�Φ� =
	
���

Φ� where 
3 is the gain of CCV. The 

throttle characteristic Ψ��Φ� =
	
�
�
�

Φ� gives the pressure over the throttle as a function of flow, 

where 
� is the throttle gain. The throttle can be thought of as a simplified model of a power 

turbine.  

For a given operating point (OP) (��,��), the dynamic model is developed in the form of 

state-space equations 	 � = !� ,1� equations (6.2)-(6.4), where	 ∈ ℝ�,1 ∈ ℝ�.  = (�, �,�)�represents the state vector of the system and 1 = �1	,1�� is the control vector. It is defined in 

error coordinates with respect to the coordinates of the operating point (��, ��). In this model,  � = Φ − �� , and � = Ψ − ��. � is the squared amplitude of the first harmonic of rotating stall.  

�� = 2	3� + ϕ� − 1	4� + Ψ� − Δ5	5                                                                                       (6.2) 

�� = 2� ��� − � − 1� + Δ" −
��
�
� �565�

�
− 1� −

��
���				�	

�                                                            (6.3) 

�� = ��(1 − �(565�)

�
− 1�� −


�
	− ��(565�)

�����
)                                                                               (6.4) 

 

 

Figure 6.1: Compression system comprising CCV 
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Control variables 1	 = 
� and 1� = �3(�) include the effect of throttle and the pressure 

drop over CCV (in error coordinates) respectively. A partially closed CCV during normal 

operation of the compressor leads to a bidirectional control law 1�	.The compressor characteristic 

given in (6.1) in global coordinates can be expressed in error coordinates as: 

����� = −6��� − 6��� − 6	�                                                                                             (6.5) 

where 6	 =
��5�

���
(
5�

�
− 2) , 6� =

��
���

�5�

�
− 1� , and 6� =

�
���

> 0 . 

All derivatives are calculated with respect to a normalized time 	': = 	( �)  where  ( is the 

actual time, � is the mean compressor radius, and 	 is the constant compressor tangential speed. 

Here, 2	 =
	

���
�
 , 2� =

	

�

 , and �� is the effective flow-passage nondimensional length of the 

compressor and ducts. B is a positive parameter (so-called Greitzer’s B-parameter). The type of 

the developed nonlinear behavior to a great extent depends on the value of this parameter (small 

B can lead to rotating stall, and large B can cause surge). 

In the model, 75 = Φ� + 85 and 7" = 9� + 8"	include model uncertainties and 

external disturbances. Mass flow disturbance Φ�(') and pressure disturbance Ψ�(') are both 

considered as defined by Simon and Valavani [124]. The disturbances are time varying, non-

vanishing, and bounded (‖Φ�‖7 and ‖Ψ�‖7 exist). In addition to time varying disturbances, 

constant or slow varying offsets 8" and 85	are also introduced. These can be respectively 

thought of as an uncertainty in the compressor and throttle characteristics.  

Setting �� = �� = �� = 0 leads to two equilibrium points:  ��	 = 0	 where the compressor is 

in its active operating point ���,��� or 	��� = 4(1 − ��
�

− 1�� −
���
�����

) when the system is in 

fully developed rotating stall. By using ��� in (6.3), one can obtain the equivalent stall 

characteristic Ψ8��Φ�, which is affected by pressure drop over CCV as can be seen in (6.6) (see 

[47] for more information). 

Ψ���Φ� = ��� + � �1 −
�
�
��
�

− 1� +
9
�
��
�

− 1��� +
9
�

Ψ3�Φ� −
��
����

�1 −
��

������
�Φ              (6.6) 

Figure 6.a plots these characteristics: Ψ��Φ� (compressor map without CCV), Ψ���Φ� 
(equivalent compressor map with CCV), Ψ3�Φ� (pressure drop over CCV), Ψ��Φ� (pressure 

drop over throttle), Ψ��Φ� (stall characteristic without CCV), and Ψ���Φ� (equivalent stall 
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characteristic with CCV) in (Φ, Ψ) plane. The OP of the compression system (��,��) is the 

intersection of the throttle characteristic and the equivalent compressor map. An efficient and 

stable OP is normally located near the peak of the equivalent compressor map (corresponding to a 

high pressure rise). Moreover, it can be shown that this OP corresponds to fully damped stall 

[142]. 

Figure 6.2a shows how the pressure drop over CCV can modify the equivalent 

compressor map and equivalent stall characteristic as well (see [47] for more details). This 

actuator can therefore be used to stabilize an unstable OP. Roughly speaking, when an OP is 

located in the negative slope area of the equivalent compressor map, it is stable [65]. Figure 6.2b 

shows that due to the pressure drop over CCV an unstable initial OP in the positive slope area of 

the compressor map is changed to a stable OP in the negative slope area of the equivalent 

compressor map. Furthermore, throttle control can also be applied to move the OP. In this work, 

these two actuators are used to stabilize the system and eliminate rotating stall and surge. 

 

 

  

Figure 6.2: a) throttle characteristic, CCV pressure drop, original and equivalent compressor and 

stall characteristic  

 b) Effect of pressure drop over CCV on the equivalent compressor characteristic and the stability 

of the OP  
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6.3 Passivity-based Control 

The main objectives of this section are, firstly, to passificate the axial compression system 

model and, secondly, to achieve disturbance rejection. In [154], the conditions under which a 

nonlinear system can be rendered passive via smooth state feedback are explained. Based on this 

work, several authors have proposed to include uncertain terms (model uncertainties and external 

disturbances) in order to develop a RPBC [11, 12, 159]. These works are based on assumptions 

on uncertainties (vanishing perturbations) or measurable states (full-state feedback with stall as a 

state-variable) which are not applicable here. Consequently, we remove certain restrictions that 

are imposed on the uncertainties and propose a new Lyapunov function stability analysis.  We 

demonstrate that the control law developed in Theorem 3.1 below ensures robust asymptotic 

stabilization of the compression system model.  Furthermore, this easy-to-implement RPBC does 

not require a full-state feedback.  

Theorem 3.1:  

Consider the following disturbed system: 

Σ1: ;<� = !��<, 0� + !	�<, =�=																																												=� = ���<, =� + ���<, =�1 + >�<, =� + Δ�<, =�				                                                              (6.7) 

Where = is the output, !�(<, =), !	(<, =), ��(<, =), and ��(<, =) are smooth functions and ��(<, =) is invertible for all < ∈ �(, =	 ∈ �,,	and 1 ∈ �,. Δ(<, =) is the system uncertainty and >(<, =) is the external disturbance. 

If Δ(<, =) and  >(<, =) are bounded and if the zero dynamics of the system are stable (i.e. 

there exists a positive storage function ?(<) such that:	?�0� = 0 and 
:�
:;

!�(<, 0) ≤ 0) and 

assuming that 
:�
:;

!	�<, =� is bounded then feedback control law (6.8) guarantees the global 

boundedness of variable states of Σ	 and (<, =)	converges to a residual set. The size of the 

residual set can be arbitrarily made small by the choice of design parameters. 

1 = −���<, =�!	@���<, =� + A�=�B	                                                                                           (6.8) 

where  A�=� satisfies =�A�=� > 0 . 

Proof: 

Given a positive storage function for the system Σ1 as: 
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.�<, =� = ?�<� +
	
�
=�=                                                                                                              (6.9) 

differentiating .(<, =) gives: 

.� �<, =� =
:�
:;

�!��<, 0� + !	�<, =�=� + =����<, =� + =����<, =�1 + =��> + Δ�                    (6.10) 

Since  
:�
:;

!��<, 0� ≤ 0, the substitution of the control law (6.8) into (6.10) gives that: 

.� �<, =� ≤ −=�A�=� + =�C                                                                                                       (6.11) 

where  

C = DC	 … 	C(E� = [
:�
:;

!	�<, =�]� + �> + Δ�                                                                            (6.12) 

Now, we use the simplified form of Young’s inequality which states that for all � > 0 

and all (F	, F�) ∈ ℝ�: 

F	F� ≤ �F	� +
	
��

F��                                                                                                                  (6.13) 

By applying (6.13) to each term of  =�C, we have: 

=�C� ≤ �=�� +
	
��

C��					∀� > 0, G = 1, … , $                                                                               (6.14) 

Following the boundedness of uncertainties and assuming that H:�
:;

!	�<, =�H
7

 exists, we have: 

=�C ≤ �=�= +
(
��

‖C‖7�                                                                                                            (6.15) 

therefore: 

.� �<, =� ≤ −=�A	�=� +
(
��

‖C‖7�                                                                                               (6.16) 

where 	 
A	�=� = A�=� − �=                                                                                                                   (6.17) 

Appropriate choice of  A�=� can satisfy the condition  =�A	�=� > 0 (e.g. A�=� = I=		 
with I − �J positive definite). Since =�A	(=) and .(<, =) are radially unbounded and 

positive definite, according to the work of Krstic et al. (Lemma 2.26) [160], we can 

demonstrate that the control law of (6.8) guarantees the global uniform boundedness of Σ	 
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variable states at origin and (<, =) convergences to residual set 	<, outside which .� �<, =� < 0. 

 

	< = K=: |=| ≤ M	!	.M�.M�!	 (�� ‖C‖7� N                                                                                     (6.18) 

where M	, M�, and M� are O��PP − Q7 functions such that: 

M	(|(<, =)|) ≤ .(<, =) ≤ M�(|(<, =)|)                                                                                     (6.19) 

M�(|=|) ≤ =�A	(=)                                                                                                                   (6.20) 

The size of this set depends on ‖C‖7�  and � as the design parameter. A smaller size of 	< 

requires a large �	parameter, which implies higher controller gain. 

6.4 PBC Design for MG3 

Here, it is supposed that mass flow � and pressure rise � in the error coordinates can both 

be measured. Then = = D�			�E�and the model (6.2)-(6.4) can be rewritten in the form of system 

Σ1 including matched uncertainties. Since � cannot be practically measured, the idea in this paper 

is to consider all the terms containing � as part of the disturbances.  This simplifies the control 

design and allows us to have an output feedback strategy. Here, �� and �� do not depend on � and 

the assumptions of perturbation boundedness of Theorem 3.1 are satisfied.  

;�� = !���, 0� + !	��, =�=																																=� = ���=� + ���=�1 + >��, =� + Δ�=�				                                                                               (6.21) 

 where  

�� = R 0 −2�
−2	4� + �� 0

S	                                                                                                    (6.22) 

�� = T2�(−� + ��)2	(� + ��)
U                                                                                                                (6.23) 

> = V −2	W�2� �−
��
�

�565�

�
− 1� −

��
����

+ Ψ��X                                                                              (6.24) 

Δ = R−2	852�8" S                                                                                                                            (6.25) 



70 

 

�� is nonsingular in the domain of interest where � + �� > 0. Furthermore, Gravdahl 

showed that the squared amplitude of rotating stall and mass flow have upper bounds [47]: 

 ∃	�,*; < ∞		such that ��'� ≤ �,*; 		∀	' > 0, and �,�( ≤ Φ ≤ ��=>?� , where ��=>?� is the 

choking value of the mass flow and �,�( is the negative flow during deep surge. The CCV gain 

is practically limited as well, in other words 
3 ∈ [
,�(, 
,*;]. Consequently, > and Δ are both 

bounded. Similarly, H:�
:;

!	�<, =�H
7

exists since: 

!	��, =� = ���(−
56�5�

��
+

�
�

−
�@
�����

)                                                                                       (6.26) 

where �, �, and 
3 are nonzero. 

To investigate the stability of zero dynamics, suppose that a nominal OP is initially 

located at the peak of the compressor map (which is ideally the case). It can be seen that the peak 

of the compressor map in (6.1) is located at �Φ, Ψ� = (2�, 2� + ���). Therefore, �� = 2� at 

this OP: 

!���, 0� = �� �−

�
	− ��5�

�����
�                                                                                                      (6.27) 

Considering	? =
	

�A�	


��, one can show that: 

:�
:

!���, 0� =
�

�	


�−

�

−
��5�

�����
�                                                                                                (6.28) 

In (6.28) the parameters (�, �), ��, and � are all positive. 

Hence 
:�
:

!���, 0� ≤ 0 , this satisfies the first condition of Theorem 3.1. By choosing A�=� = I=, 

Theorem 3.1 states that the following control law (6.29) can stabilize the OP in the presence of 

the external disturbances and the model uncertainties. 

1 = D1	, 1�E� = V 565�6?�
��2�"

B"6"�

−� + �� + 2�!	�	�					X                                                                               (6.29) 

In the developed control law, I = [
�	 0

0 ��] consists of two high enough positive design 

parameters (�	 and ��) that guarantee the convergence to 	< and limit the size of this residual 

convergence set.  
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Note that the control law (6.29) cancels all the nonlinearities in the model. Since the term 6� is always positive in (6.5), we propose the following modification to avoid canceling the 

stabilizing nonlinearities (−6���): 

1 = D1	, 1�E� = V 565�6?�
��2�"

B"6"�

−� − 6��� − 6	� + 2�!	�	�					X                                                             (6.30) 

It is worth noting that all uncertainties in the model parameters are considered in the terms 

of Δ, therefore the parameter set used in (6.30) is only a reasonable estimation.  

Remark: 

In the case of deep surge, the system does not include the zero dynamics and the 

simplified form of control system can be derived by putting � = 0 in (6.21). It can be seen that  � = 0 considerably relaxes the boundedness conditions; however, the developed control laws 

(6.30) remains effective. 

6.5 Results and Discussions 

All of the numerical constants and model parameters, which are used in this section, are 

mentioned in Table 6.1. At first, we demonstrate that external disturbances and model 

uncertainties can lead to rotating stall when the controller is deactivated (�-parameter in this case 

is 0.1). The system initially starts from OP1 (the intersection of throttle characteristic 
� = 0.62 

and compressor map at (��,��) = (0.51,0.66) (see Figure 6.3). This OP is located in the 

negative slope area and the system is initially stable. As seen in Figure 6.4f, we test the controller 

for non-vanishing disturbances including time varying sinusoidal and constant offsets, which are 

applied at ' = 50. Consequently, the system develops rotating stall (Figure 6.4c) and output 

pressure drops (Figure 6.4a). This spells trouble for normal operation of the axial compressor. In 

Figure 6.3, the disturbed trajectory (blue line) settles down at OP2 consisting of the effect of 

rotating stall and disturbances. The disturbances last until ' = 200, but due to the hysteresis in 

the qualitative behavior of the system, rotating stall cannot be automatically removed (see Figure 

6.4c). When disturbances disappear, uncontrolled trajectory (magenta line) ends up in OP3 which 

is located on the stall characteristic where pressure is considerably reduced. 
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At ' = 300, the controller starts and rapidly damps out rotating stall and imposes the 

controlled trajectory (green line) toward the initial efficient OP1 where output pressure is high. In 

this simulation, �	 = 10 and �� = 0.2. Figure 6.4d and 6.4e respectively report the control laws 1	 and 1�. 

To investigate the effectiveness of the controller in the presence of perturbations, long 

lasting disturbances are applied to the system for ' > 50 (Figure 6.6f). Again, Figure 6.5 and 6.6 

show that the controller, which is activated at ' = 300, stabilizes the system at the desired OP1. 

In Figure 6.5, the controlled system trajectory finally reaches to the initial desired OP1.  

 

Figure 6.3: Perturbations lead to rotating stall, but RPBC effectively damps it out, OP1: efficient 

OP, OP2: developed rotating stall and disturbances, OP3: rotating stall OP 

 

Figure 6.4: RPBC returns the system to its initial efficient OP and removes rotating stall 
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Figure 6.6c shows that rotating stall is rapidly damped out and Figure 6.6a reports the 

corresponding pressure increase after the activation of the controller at ' = 300. In this case, �	 = �� = 20. These two design parameters also modify the transient response of the system 

(e.g. the fall time of rotating stall). The scale of Figure 6.6d and 6.6e are adjusted to show the 

variation of control laws due to the time varying sinusoidal disturbances. 

 

 

 

Figure 6.5: RPBC removes rotating stall and returns the system to its desired initial OP1, OP1: 

initial efficient OP, OP2: OP including rotating stall and disturbances 

 

Figure 6.6: RPBC increases the output pressure and eliminates rotating stall 
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Compressors suffer from deep surge as well. For surge simulations, the system initially 

starts at an efficient OP at the peak of compressor map. In this case, at ' = 50, we apply only the 

offset disturbances (thought of as model uncertainties) that move the system toward surge 

condition. Deep surge can be simulated by choosing a high enough value of �-parameter (e.g. � = 2 leads to surge). During deep surge, flow reversal occurs (see Figure 6.8b with negative 

flow values). Although perturbations are removed at ' = 2000, the system remains in surge 

condition (see Figure 6.8f and 6.8b). Then at ' = 3000, the controller starts and quickly 

stabilizes deep surge as shown in Figure 6.8a and 6.8b. Control efforts are shown in Figure 6.8d 

and 6.8e. 

 

Figure 6.7: RPBC stabilizes the compression system and eliminates deep surge 

 

Figure 6.8: Deep surge including flow reversal and pressure oscillation is damped out due to 

RPBC activation 
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Figure 6.7 reports disturbed and uncontrolled trajectories showing a limit cycle. Finally, 

when the control is applied at ' = 3000, the controlled system trajectory settles down at the 

initial efficient OP1 (green trajectory). This time-domain simulation shows that the developed 

control law (6.30) can robustly stabilize deep surge as well. 

6.6 Conclusion 

In this paper, the effectiveness of RPBC in stabilizing compression systems is 

demonstrated. Here, surge and rotating stall being potentially able to cause mechanical damages 

and performance reduction are robustly controlled in the presence of external disturbances and 

model uncertainties. The controller derives the control signal from pressure and flow 

measurements and applies it to the system by CCV and throttle actuations. The main contribution 

of this paper is to propose a simple and easy-to-implement RPBC algorithm that only relies on a 

small number of design parameters and does not require accurate knowledge of the model 

parameters and full state feedback. Furthermore, it can effectively reject non-vanishing bounded 

perturbations.  

Analytical developments demonstrate that RPBC accomplishes the stability of the closed-

loop disturbed system. The size of the residual convergence set and the transient response can be 

adjusted by control parameters. Time-domain simulation evaluates the performance of the control 

system and widely supports analytical outcomes.  

This brings us to the conclusion that by taking advantage of control methods based on the 

passivity properties of compression systems, a wide range of machines using compressors can 

obtain higher performance and greater operational reliability. Among these machines, gas 

turbines play an essential role both in aerospace and energy industries. 

Table 6.1: Numerical values used in simulations 

 
 

 
�� 3 � 0.425 � 0.25 85 −0.05 � 0.18 8" 0.02 � for rotating stall 0.1 Ψ�(') 0.01PG$	(0.2') � for deep surge 2 Φ�(') 0.01PG$	(0.2') 
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Abstract: In this work, we address the robust control of performance limiting 

nonlinearities: surge and rotating stall in constant speed axial compressors. This topic has been 

the subject of ongoing studies over the years and is still a challenge for researchers. Here, the 

third-order Moore-Greitzer model (MG3) comprising close-coupled valve and including 

parameter uncertainties and external disturbances is considered. Second order sliding mode 

control and input output feedback linearization using throttle and close-coupled valve actuations 

are applied to control the model. The applicability of the method is proved by including the 

rotating stall harmonic in disturbance terms and ensuring the boundedness of perturbations. 

Time-domain simulations corroborate theoretical analysis and demonstrate that this chattering-

free controller can effectively stabilize the nonlinearities and robustly reject external 

perturbations and model uncertainties.  

Key words: Second Order Sliding Mode Control, Axial Compressor, Rotating Stall and Surge 

Control, Throttle Control, Close-Coupled Valve, Model Uncertainty and Disturbance Rejection 

7.1 Introduction 

A wide range of machines benefits from the high efficiency and the large mass flow 

capacity of axial compressors. Among these machines, gas turbines play an essential role in both 

aerospace and energy industries. Axial compressors suffer however from two kinds of 

nonlinearities: rotating stall and surge. Rotating stall is a nonaxisymmetric perturbation that turns 

around the axis of compressors and reduces average mass flow and pressure rise. This nonlinear 
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phenomenon in its fully developed case spells operational troubles and causes mechanical 

vibrations and damages. It can also lead to deep surge, another violent nonlinear phenomenon 

which represents an axisymmetric limit cycle of mass flow including flow reversal. Deep surge 

can damage mechanical parts of axial compressors in only a few cycles (see [37] for more 

details). Working far from such nonlinearities and unstable zones is a simple solution to the 

problem, but this is achieved at the expense of performance. Another solution is active control, 

which simultaneously guarantees stability and performance. 

Axial compressors have been the subject of much research for years. Despite tremendous 

efforts on modeling, sensing, actuating, and control of axial compressors, these key issues are 

still challenging problems. From the modeling point of view, a nonlinear 2D model introduced by 

Moore and Greitzer  [36] dominates recent studies on rotating stall and surge. This lumped model 

(so-called MG3) is developed for constant speed axial compressors (CSACs) based on the first 

harmonic approximation of rotating stall. In spite of the simple form of MG3, it captures surge 

and rotating stall developments and explains the qualitative behavior of compression systems.  

Later, researchers proposed different extensions to the model [40, 42, 161]. 

Several studies and experimental results have been performed on different types of 

actuators for surge and rotating stall control. In 1977, Dussourd [157] and in 1991, Simon and 

Valavani [124] addressed close-coupled valve (CCV) as an actuator in compression system 

control. Among the different actuation methods, CCV remains one of the most promising [162, 

163]. In 1998, Gravdahl introduced an augmented MG3 model including CCV in error 

coordinates [47]. This augmented model has recently attracted increasing attention in the control 

of compression systems [94, 123, 131].  

From the control point of view, model uncertainties reflect a key challenge that confronts 

researchers. The precise estimation of model parameters, especially in the unstable zone, is 

difficult. Therefore, control approaches that require the accurate knowledge of the compression 

system parameters cannot be robustly implemented. Another problem is that the squared 

amplitude of stall as a state of MG3 is experimentally difficult to measure and control methods 

that need full state feedback cannot practically overcome this problem. Although, mass flow 

measurement is a challenge as well, it is surmountable [113]. Mass flow is frequently used in the 

literature to develop control design methodologies [114, 115], and there exist some implemented 
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controllers that use this measurement [116]. Furthermore, nonlinear observers are proposed to 

estimate mass flow [117, 118]. The last but not least problem is the effect of external 

disturbances that can drive the system toward instabilities. Pressure and mass flow disturbances 

were taken into account in the model by Simon and Valavani [124]. 

In recent years, sliding mode control (SMC) has gained increasing acceptance by research 

communities, due to its potential insensitivity to model errors, parametric uncertainties, and 

external disturbances. The drawback of SMC in terms of chattering is overcome by chattering-

free methods, among them higher order SMC. A constructive method was newly proposed to 

develop higher order SMCs for a class of multi-input multi-output nonlinear uncertain systems 

[164]. The reasonable computation load and the fairly straightforward firmware implementation 

of SMC make it an excellent choice in such applications. Over the past decade, SMC has been 

increasingly applied to stabilize compression system nonlinearities. In 2001, Liaw and Huang 

[95] applied a first order SMC (FOSMC) to robustly stabilize axial-flow compressor dynamics by 

CCV actuation. They showed that the domain of attraction for an unstalled operating equilibrium 

is enlarged to a great extent. This control approach needed full state feedback (i.e. rotating stall 

measurements) and suffered from chattering. In 2008, Bartolini et al. (Bartolini G., Muntoni A., 

Pisano A., & Usai E., 2008) proposed a second order SMC (SOSMC) to stabilize surge in 

compression systems by CCV and throttle actuation. Although this control approach coped with 

chattering, it was developed for surge stabilization only (two-state simplified form of the Moor-

Greitzer model) and could not be used to damp out rotating stall. It also required the zero 

crossing knowledge of  sliding variables derivatives. In 2009, Song et al. used SMC to control a 

centrifugal compressor with spool dynamics, which does not include rotating stall [92].  

Here, we propose a SMC combined with feedback linearization control design to robustly 

stabilize both surge and rotating stall in MG3 model comprising CCV in the presence of external 

disturbances and model uncertainties. We are inspired by the higher order sliding mode control 

method proposed by Defoort et al. [165], which is based on classical feedback linearization, and 

develop our chattering free SOSMC for the multi-input multi-output nonlinear uncertain 

compressor model. However, here, the proposed classical feedback linearization by defoort et al. 

is appropriately modified to avoid eliminating the stabilizing nonlinearities. In the control design, 

we reformulate the problem and propose the terms consisting of rotating stall as disturbances. 

This approach, which is supported by the proof of perturbations boundedness, greatly simplifies 
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the design. As a consequence, a full state feedback including rotating stall amplitude is not 

assumed and the control is only driven from pressure and mass flow measurements. Furthermore, 

the control scheme does not require the accurate knowledge of the compression system 

parameters. Finally, the information of initial conditions and zero crossing of sliding variables 

derivatives are not used in the control design.  Our time-domain simulations corroborating the 

analytical analysis reveal that the global asymptotic stabilization of the closed-loop system can be 

achieved in finite time by adjusting only a small number of control parameters.  

The rest of this paper is organized as follows. In Section 7.2, we recall MG3 model 

comprising CCV and define the feasible region of actuation. Section 7.3 explains the control 

method and underlines assumptions.  We first develop FOSMC and finally propose SOSMC as 

the main contribution of the paper. Section 7.4 shows time-domain simulation results and opens 

up related discussions. Finally, some conclusions about this work are drawn in Section 7.5. 

7.2 Axial Compressors’ Model Comprising CCV 

The compression system with CCV considered is presented in Figure 7.1. An extension to 

MG3 comprising CCV, which is introduced in [47], is briefly reviewed in this section. The model 

dynamics are: 

Ψ� =
	

�
���
�Φ − ΦC�                                                                                                                    (7.1) 

Φ� =
	

�
Y−Ψ + Ψ� −

��
�

��
�

− 1� −
	
��

���
�

+ Φ��Z	                                                                  (7.2) 

�� = � �1 − ��
�

− 1�� −

�

−
	
��
���	
��

� �		                                                                                      (7.3) 

 

 

Figure 7.1: Compression system with CCV 
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Where, Φ is the circumferentially averaged mass flow coefficient, Ψ is the total-to-static 

pressure rise coefficient, and � is the squared amplitude of rotating stall. Ψ� is the compressor 

characteristic (map), Ψ3 and ΨC are the pressure drop over CCV and throttle respectively. 

�� (the effective flow-passage nondimensional length of the compressor), �, and B (so-

called Greitzer’s B-parameter) are constant parameters. The nonlinear behavior of the model 

depends to a great extent on the value of Greitzer’s B-parameter (small B can lead to rotating 

stall, and large B can cause surge).  

The pressure rise of the compressor Ψ�(Φ) is a nonlinear function of the mass flow and a 

cubic form of this function (7.4) is widely used in the literature.  

 

Ψ��Φ� = ��� + � �1 +
�
�
��
�

− 1� −
	
�
��
�

− 1���                                                                    (7.4) 

where � is the compressor characteristic height factor, � is the compressor characteristic width 

factor, and  ��� is shut-off head (they are all constant [47]).  


 is the gain of CCV which is proportional to the valve opening and determines its 

characteristic Ψ3�Φ� =
	
��

Φ�, while the throttle characteristic, which can be thought of as a 

simple model of a power turbine, is given by ΨC(Φ) =
	
D

�

Φ�. In Fig. 2; the three characteristics 

Ψ�, Ψ3, and Ψ� as well as the so-called equivalent compressor characteristic (defined as 

Ψ���Φ� = Ψ��Φ� − Ψ3�Φ�: the sum of the pressure rise of the compressor and the pressure drop 

over CCV) are presented. It can be seen how the pressure drop over CCV can modify the 

pressure rise over the equivalent compressor from the blue to the green line. 

Figure 7.2 shows also the operating point (OP) of the compression system which is the 

intersection of the throttle characteristic and the equivalent compressor map. The pressure drop 

over CCV and throttle can be used to change the OP and stabilize the system. Generally 

speaking, when an OP is located in the negative slope area of the equivalent compressor map, it is 

stable [65]. It can be seen that the initially unstable OP (P1) in the positive slope area of the 
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original compressor map is changed to a stable OP (P2) in the negative slope area of the 

equivalent compressor map due to the pressure drop over CCV. The locus of the peak of 

equivalent compressor maps for a variation range of CCV is depicted in Figure 7.2. All of the 

OPs at the right side of this locus are stable. Throttle control can also change the slope of the 

throttle characteristic and move the OP. Furthermore, because the gain of throttle and CCV are 

practically limited (	
� ∈ D
�,�(, 
�,*;E , 
 ∈ D0, 
,*;E	) , the stable operating zone is also 

limited to these boundaries (see SOP in Fig. 3). In this work, these two actuators are used to 

eliminate nonlinearities in the presence of external disturbances and model parameter variations 

at an efficient OP located at the top of the compressor map.  

Setting Φ� = Ψ� = �� = 0 leads to two equilibria:  ��	 = 0,  where the compressor is in its 

active operating point, or 	��� = 4 �1 − ��
�

− 1�� −
���
����

� when the system is in fully developed 

rotating stall. By using ��� in (2), one can obtain the equivalent stall characteristic Ψ8��Φ� given 

by:  

Ψ���Φ� = ��� + � �1 −
�
�
��
�

− 1� +
9
�
��
�

− 1��� +
9
�

Ψ3�Φ� −
��
���

�1 −
��

�����
�Φ              (7.5) 

Note that this characteristic is also modified by pressure drop over CCV. The original and 

equivalent stall characteristics (with and without CCV) are both depicted in Figure 7.2 and 7.3.  

 

Figure 7.2: Pressure drop over CCV corrects the equivalent compressor characteristic and 

stabilizes the OP 
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For control proposes, the model (7.1)-(7.3) can be redefined in error coordinates with 

respect to the coordinates of an OP (Φ�, Ψ�) ideally located at the peak of the compressor 

characteristic where � = 0 and the pressure rise is high enough for the normal operation of the 

compression system. The model becomes in the form of 	 � = !� ,1� ((7.6)-(7.8) below) where 	 ∈ ℝ�,1 ∈ ℝ�.  = (�, �, �)�represents the state vector of the system with � = Φ − Φ� and � = Ψ − Ψ� , and 1 = (1	,1�) is the control vector. The control variables 1	 = 
� (throttle 

gain) and 1� = �3��� include the effect of throttle and the pressure drop over CCV respectively. 

A partially closed CCV during normal operation leads to a bidirectional control 1�	. All 

derivatives are calculated with respect to a normalized time ': = 	( �)  where  ( is the actual time, � is the mean compressor radius, and. 	 is the constant compressor tangential speed.  

�� = 2	3� − 1	4� + Ψ� + Φ� − Δ�5                                                                                      (7.6) 

�� = 2� ���	 − � − 1� −
��
�
� �56��

�
− 1� −

��
���

+ Δ��                                                           (7.7) 

�� = ��(1 − �56��

�
− 1�� −


�
	− ��(56��)

����
)                                                                               (7.8) 

where , 2	 =
	

���
�
 , 2� =

	

�

 .  

In this model Δ�(') includes external mass flow disturbances and model uncertainties as 

well. Δ�(') consists of pressure disturbances and model uncertainties as considered by Simon 

and Valavani [124]. These terms are assumed to be time varying and bounded (i.e. ‖Δ�‖7 and ‖Δ�‖7 exist). 

The throttle, CCV, and compressor characteristics in the error coordinates are respectively 

defined as: 

����� = 
�4� + Ψ� − Φ�                                                                                                       (7.9) 

�3��� = Ψ3�Φ� + Ψ�                                                                                                              (7.10) 

����� = −6��� − 6��� − 6	�                                                                                           (7.11) 
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Figure 7.3: Black lines show the boundaries of stabilizable area 

OCM: original compressor map, OSM: original stall characteristic, ECM: equivalent compressor 

map, ESC: equivalent stall characteristic, LPs: locus of peaks, MinT: Throttle characteristic for 

minimum throttle gain, MaxT: Throttle characteristic for maximum throttle gain,  

SOP: stabilizable OP, SDOP: stabilizable disturbed OP 

where the constants: 6	 =
����

���
(
��

�
− 2), 6� =

��
���

���

�
− 1� , and 6� =

�
���

> 0 .  

Going back to Figure 7.3, it can be seen that including bounded disturbances further limits 

the stabilizable area to stabilizable disturbed OPs (SDOP) in Figure 7.3, approximately depicted 

by the black dashed line. The width of this area directly depends on ‖Δ�‖7 and ‖Δ�‖7. 

7.3 Control Design 

Let us consider the model (7.6)-(7.8) as a square MIMO nonlinear affine uncertain 

system:  

[1: ;<� = !�<� + ∑ \��<�1�,
�.	=� = ]��<�																											                                                                                                 (7.12) 

where the state variable < = (�, �, �)	 belongs to ℝ�	and the control input 1 = (1	,1�) ∈ ℝ�. 

Here, !(<) and \(<) are uncertain smooth functions and ]�<� ∈ ℝ� is a smooth measurable 

output vector. Σ1 is defined in error coordinates and in the regulation problem, the objective is to 

make the outputs vanish in finite time.  
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We next apply two control approaches for our application, a FOSMC and a SOSMC 

which are inspired by the work of Defoort et al. [165]. To this end, we need to demonstrate that 

the two assumptions in Defoort’s work are satisfied in our case. The control design is then 

performed in four steps. In the first step, we judiciously reformulate the regulation problem to a 

sliding mode design problem. In the second step, we partially decouple the nominal system by 

applying a preliminary feedback. In this step, contrary to the work of Defoort, the cancellation of 

stabilizing terms is avoided in order to reduce the control effort. Later, in third step, a controller 

stabilizes the nominal system. Finally, in the fourth step, a discontinuous feedback rejects the 

perturbations and guarantees the global asymptotic stabilization of the uncertain disturbed system 

in finite time.      

7.3.1 First Order Sliding Mode Control (FOSMC) 

Let us define outputs for system Σ1	as follows: 

] = D]	,]�E� = D�,�E�                                                                                                            (7.13) 

Step1: Reformulating the problem 

By considering ](<) as sliding variable, the manifold defined as: 

? = @<:]��<� = 0B			∀	G = 1,2                                                                                                  (7.14) 

is called the first order sliding set and the motion on ? is called the first order sliding mode with 

respect to the sliding variable ]. The FOSMC allows the finite time stabilization of each output 

by defining a suitable discontinuous control law which is proposed in sequel. Here, the first time 

derivative of sliding variables yields: 

[2:	D]	� (<),]�� �<�E� = /�<� + ��<�1                                                                                      (7.15) 

with / = ^,E]	�<�, ,E]��<�_�. Vector /(<) and matrix �(<) can be partitioned into nominal 

(/̅,�a)	and unknown parts (	7F,7�)	as follows: 

;/�<� = /̅�<� + 7F�<�	��<� = �a�<� 	+ 7�(<)
                                                                                                           (7.16) 
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Nominal parts (/̅ and �a) are known a priori. 7F and 7� traditionally comprise the model 

uncertainties and perturbations. In this work, however we consider all terms comprising � in 7F. 

Although  � is a model state variable, it cannot be measured, moreover its nature as a perturbation 

conveys the idea that it can be thought of as uncertain terms. This approach simplifies the control 

design and makes the proposed control method applicable.  

  By calculating /̅, �a , and 7F for the model at hand (7.6)-(7.8) we have: 

�a = R−2	4� + 9� 0

0 −2�S                                                                                                      (7.17) 

/̅ = T 2	� + 2	Φ�

−2�� − 2�6��� − 2�6	�U                                                                                           (7.18) 

7F = V −2	7�
−2� ���� �56G�

�
− 1� −

��
���

	–7��X                                                                             (7.19) 

For the applied model, 7� ends up being equal to zero. 

Remark:  

In order to avoid eliminating the stabilizing nonlinearities and replacing them with 

destabilizing terms, the proposed /̅ in (7.18) has been properly modified. According to the 

classical feedback linearization, the term 2��� where �� = −6��� − 6��� − 6	� must be 

cancelled but the term –2�6���, where 2�6� > 0, is a stabilizing term in (7.7), we do not, 

therefore, include this term in the decoupling control law (7.24). The term – 2�6��� is later 

considered in (7.25).  

Assumption 1: 

We assume that there is an a priori known constant b such that the uncertain function 7F 
satisfies the following inequality: 

‖7F�<�‖ ≤ b						< ∈ c ⊂ ��                                                                                                    (7.20) 

c is an open subset of ℝ� within which the boundedness of 7F is ensured.  
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Gravdahl showed that the squared amplitude of rotating stall has an upper bound [47].  

∃	�,*; < ∞		such that ��'� ≤ �,*; 		∀	' > 0                                                                           (7.21) 

and an upper bound on mass flow is given by choking � < ��=>?�. Finally, the boundedness of 

external disturbances and model uncertainties implies the boundedness of 7F and the system 

satisfies the conditions of Assumption 1.  

Assumption 2:  

We assume that matrix �a�<� is nonsingular and the associated zero dynamics of [2 are 

asymptotically stable.  

To examine this assumption, from (7.17), it can be seen that matrix �a	is nonsingular for 

the operation range of the compressor because 2	 are 	2� are non-zero model constants and �+9� > 0. Furthermore, we suppose that the desired OP is located at the peak of the compressor 

map (where Φ� = 2W) , which is ideally the case due to maximum pressure rise (see [47] for 

more information). Zero dynamics can then be expressed as: 

�� = �� �−

�
	− ����

����
�                                                                                                                (7.22) 

Taking into account . =
	
�
��, one can show that: 

.� = ��� �−

�

−
����

����
�                                                                                                              (7.23) 

where parameters (�, �, �), Φ�, and � (squared amplitude of stall) are all positive then  ∀� >

0	 → .� < 0	 . Therefore the system satisfies the condition of Assumption 2. 

Step2: Normal Form Representation 

By applying the following preliminary feedback to system Σ2: 

1 = �a!	(−/̅ + d)                                                                                                                    (7.24) 
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where d = Dd	,d�E� ∈ ℝ� is the auxiliary control input, one can partially decouple the nominal 

system (the system without uncertainties). Consequently, system Σ2 can be expressed as follows: 

[3: D]	� (<),]�� �<�E� = 7F + d + D0, −2�6���E�                                                                    (7.25) 

Now, the design problem of the FOSMC of system Σ1 with respect to the sliding variable ](<) is equivalent to the finite time stabilization of the multivariable uncertain system Σ3. In 

what follows, this problem is tackled in two further steps. 

Step3: Stabilization of the Nominal System  

At first, we stabilize the nominal part of system Σ3 (7F = 0). The nominal system can be 

represented by two independent integrators as follows: 

[(>,:	D]	� ,]�� E� = Dd(>,	,d(>,� − 2�6���E�                                                                       (7.26) 

In this case, the stabilization of ΣHIJ can directly be achieved by d(>,,� = −��]�	, ∀G =

1,2 where �� > 0 is a control parameter.  

d(>, :	;d(>,	 = −�	]	 = −�	�	d(>,� = −��]� = −���				                                                                                       (7.27) 

Step4: Rejection of Uncertainties and Stabilization of ef  
To stabilize uncertain system Σ3, at first, we define an augmented sliding variable ?* ∈ ℝ�and its 

associated discontinuous control law as follows: 

?*�],  *K;� = D]	,]�E� +  *K;                                                                                                 (7.28) 

;d�]� = d(>,�]� + d����(],  *K;) �*K; = −d(>,�]�																												                                                                                         (7.29) 

where auxiliary function  *K; ∈ ℝ� is used in the design of the augmented sliding variable and 

discontinuous control law d����(],  *K;) ∈ ℝ�. The nominal control law d(>,(]) ∈ ℝ� is given 

in the previous step.  

The time derivative of ?*(],  *K;) along the system trajectories can be expressed as: 
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?*� = D]�	,]��E� +  �*K; = d + 7F − d(>, = d���� + 7F                                                         (7.30) 

Now, it can be seen that the discontinuous control law d���� defined below, can ensure the 

sliding mode on (< ∈ c: ?* = 0) and consequently on ? in spite of uncertainties.  

d���� = −gPG\$(?*)                                                                                                                (7.31) 

; �*K;	 = −d(>,		 �*K;� = −d(>,�										                                                                                                             (7.32) 

;d����	 = −gPG\$�]	 +  *K;	� = −gPG\$(� +  *K;	)d����� = −gPG\$�]� +  *K;�� = −gPG\$(� +  *K;�)
                                                         (7.33) 

where the notation PG\$	(D?*	, ?*�E�) denotes DPG\$�?*	�, PG\$�?*��E�) and the gain satisfies: 

g ≥ b + C	, C > 0                                                                                                                    (7.34) 

Following these steps, now we can propose theorem1 to control the system. 

Theorem 1:  

Consider nonlinear system Σ1 and assume that Assumptions1-2 are fulfilled. Then, the control 

law: 

1 = �a!	3−/̅ + d(>,�]� + d�����],  *K;�5                                                                            (7.35) 

ensures the establishment of FOSMC in Σ2	with respect to ] in finite time. In this control law,  �*K; = −d(>,(]), with d(>,(]) and d����(],  *K;) given by (7.27) and (7.33) respectively. 

Proof  of Theorem 1: See [164].  

7.3.2 Second Order Sliding Mode Control 

Although FOSMC can robustly stabilize the system, it suffers from chattering. To raise 

the control smoothness degree, we consider 1�	 and 1�� as new control signals (see Figure 7.4). In 

other words, a second order sliding mode is defined here. 

Let us consider the sliding variables as: 
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;]	 = � − �L�E]� = � − �L�E                                                                                                                         (7.36) 

Here terms �L�E and �L�E include the desired set points. Consequently, the developed 

control law guarantees the evolution of system trajectories to the desired manifolds in finite time 

and robustly stabilizes the system there. 

 

Figure 7.4: SOSMC 

Step1: Reformulating the problem 

By considering ](<) as sliding variable, the manifold defined as: 

? = @<:]��<� = ]M� �<� = 0B			∀	G = 1,2                                                                                    (7.37) 

is called the second order sliding set and the motion on ? is called the second order sliding mode 

with respect to the sliding variable ]. The SOSMC allows the finite time stabilization of each 

output by defining a suitable discontinuous control law. To reformulate the problem, the second 

derivatives of sliding variables yields: 

[4:	D]h	(<),]h��<�E� = /�<� + ��<�1i                                                                                       (7.38) 

where < = [�,�,1	,1�]	is the new state vector and 1i = (1�	,1��) is the new input vector of the 

system. In this system, the new vector /(<) and matrix �(<) can be partitioned into nominal 

(/̅,�a) and unknown parts (7F and 7�). 

Assumptions: 

After some algebraic manipulations, we obtain /̅, �a ,	ΔF, and Δ� in this case as follows: 
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/̅ = T/̅	/̅�U : 
/̅	 = 2	2��−� − 6��� − 6��� − 6	� − 1�� − 2	� � K�5

�B"6N�

−
K�
�

�
+

K�
�B"6N�

Φ�� − �hL�E	 (7.39) 

/̅� = 2	2�3−� + 4� + 9�1	 − Φ�5 + 2���� + 6��� + 6��� + 6	� + 1���36��� +

26�� + 6	� − �hL�E                                                                                                                 (7.40) 

�a = R−2	4� + 9� 0

0 −2�S                                                                                                      (7.41) 

ΔF = TΔF	
ΔF�

U                                                                                                                                (7.42) 

Δ� = 0                                                                                                                                       (7.43) 

ΔF	, ΔF� are polynomial functions of uncertainties, disturbances, and � (see appendix). 

Again, due to the boundedness of � and �, Assumption 1 is satisfied. 

Equation (7.41) shows that the matrix �a  is nonsingular and the stability of zero dynamics 

can be proved as before, so Assumption 2 is also satisfied. 

Step2: Normal Form Representation 

The preliminary feedback: 

1 = �a!	(−/̅ + d)                                                                                                                    (7.44) 

where d = Dd	,d�E� ∈ ℝ� partially decouples the system and consequently Σ5	can be expressed 

as follows: 

[5: D]	h (<),]�h �<�E� = d + ΔF                                                                                                  (7.45) 

Now, the design problem of the second order SMC of system Σ1 with respect to the 

sliding variable ](<) is equivalent to the finite time stabilization of multivariable uncertain 

system Σ6: 
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[6:j �	,	 =  �,																						 �	,� =  �,�																					^ ��,	,  ��,�_� = 	d + ΔF

                                                                                                      (7.46) 

where   	,	 = � − �L�E ,  	,� = � − �L�E.  

As before, we follow two additional steps to tackle the problem. 

Step3: Stabilization of the Nominal System  

The nominal part of Σ6 (ΔF = 0) can be represented by two double independent integrator 

chains as follows: 

[(>,�: k]h� = d(>,,�	∀	G = 1,2}                                                                                                (7.47) 

In what follows, the proposed control law by [166] is used to asymptotically stabilize the 

nominal system at the origin in finite time. Bhat and Bernstein demonstrated that there is l� ∈ �0,1� such that, for every m� ∈ �1 − l�, 1�, ΣHIJ� is stabilized at the origin in finite time 

under the feedback: 

;d(>,	 = −�		PG\$�]	�|]	|O�� − ��	PG\$�]�	�|]�	|O��d(>,� = −�	�PG\$�]��|]�|O�� − ���PG\$�]���|]��|O��                                                          (7.48) 

where m	,� =
3�
�!3�

 and m�,� = m�. Here, �		,��	,�	�, and ��� are positive constants.   

Step4: Rejection of Uncertainties and Stabilization of e5  
To stabilize the uncertain system Σ5, the following control law is defined: 

;d� � = d(>,� � + d����( ,  *K;) �*K; = −d(>,� �																												                                                                                          (7.49) 

where  � = ^ 	,�,  �,�_� ,  = [ 	� ,  ��] , and 

; �*K;	 = −d(>,	 �*K;� = −d(>,�                                                                                                                     (7.50) 
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d���� :	;d����	 = −gPG\$�]�	 +  *K;	�d����� = −gPG\$�]�� +  *K;��                                                                                    (7.51) 

Auxiliary function  *K; ∈ ℝ� is used in the design of the augmented sliding variable ?*( ) ∈ ℝ� associated with the discontinuous control law d����( ,  *K;) ∈ ℝ�as bellow:  

?*� ,  *K;� = ^ �,	,  �,�_� +  *K;                                                                                             (7.52) 

The time derivative of ?*( ,  *K;) along the system trajectories can be expressed as: 

?*� = ^ ��,	,  ��,�_� +  �*K; = d + ΔF − d(>, = d���� + ΔF                                                     (7.53) 

The following discontinuous control law d���� is defined to ensure the sliding mode on 

(< ∈ c: ?* = 0) in spite of uncertainties.  

d���� = −gPG\$(?*)                                                                                                                (7.54) 

where the notation PG\$	(D?*	, ?*�E�) denotes DPG\$�?*	�, PG\$�?*��E�) and the gain satisfies: 

g ≥ b + C	, C > 0                                                                                                                    (7.55) 

Theorem 2:  

Consider nonlinear system Σ1 and assume that Assumptions1-2 are fulfilled. Then, the 

control law: 

1� = �a!	3−/̅ + d(>,�]� + d�����],  *K;�5                                                                            (7.56) 

with: 

j1�	 = −
	

?�B"6N�

�−/̅	 + d(>,	 + d����	�						1�� = −
	
?�

�−/̅� + d(>,� + d������																	                                                                       (7.57) 

where /̅	 and /̅� are given by (7.39) and (7.40) respectively, ensures the establishment of the 

second order sliding mode  for Σ5, with respect to ] in finite time. In this control law,  �*K; =

−d(>,(]), with d(>,(]) and d����(],  *K;) given by (7.48) and (7.51) respectively. 
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Proof of Theorem 2: 

See [164].  

7.3.3 Surge Control 

Regarding that � = 0 in surge cases, the model (7.6)-(7.8) can be simplified to the 

following two-state model: 

�� =
	

���
�
3� − 1	4� + Ψ� + Φ� − Δ�5                                                                                (7.58) 

�� = 	

�	
���	 − � − 1� + Δ��                                                                                                    (7.59) 

It is obvious that  � = 0 considerably relaxes the conditions imposed by Assumption 1; 

however, the developed control laws (7.35) and (7.57) remain effective. Therefore, the control 

design of FOSMC in section 3.1 and the one of SOSMC in section 3.2 can be directly applied to 

the model to stabilize surge.  

7.3.4 Actuator Dynamics 

Suppose that in Σ�	the actuators are non-ideal and include additional first-order dynamics 

as follows: 

-�1i� � + 1i� = 1n� 		, G = 1,2                                                                                                           (7.60) 

where 1n� is a new actuation force and -� is the actuator time constant. Then SOSMC converges in 

finite time to the following invariant boundary layers of the sliding surface (defined by (7.37)):  

o|�| < b"	-	�|�| < b5	-��	                                                                                                                           (7.61) 

o|�� | < b"�-	
|�� | < b5�-�	                                                                                                                           (7.62) 

where b5	, b"	,	b5�, and b"� are positive constants independent of -	, -�.  
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The proof of this statement is provided in [167]. This was also shown by Bartolini et al. 

[94] for SOSMC and the two-state simplified form of the model which is only valid for surge 

development.  

Here, by time domain simulations, we investigate the effect of the non-ideal CCV and 

throttle in SOSMC of rotating stall (the full-state MG3 model).  

7.4 Results and Discussions 

All of the numerical constants and model parameters, which are used in this section, are 

mentioned in Table 7.1.  

7.4.1 First Order Sliding Mode Control 

Figure 7.5 reports the time-domain simulation results of FOSMC given by (7.35). The 

system initially starts from an efficient OP at the peak of the compressor map (OP1), where 

pressure rise is high and stall amplitude is zero. The controller is disabled until	' = 300.  

Figure 7.5e shows the pressure Δ� = Ψ��'� + 8�	and mass flow Δ� = Φ��'� + 8� 

perturbations. These perturbations consist of two terms: 1- Time varying sinusoidal disturbances 

Φ��'�, Ψ��'� and constant offsets 8� and 8� that can be thought of as model uncertainties (see 

Table 7.1 for the selected values).  

By including perturbations at ' = 100, the uncontrolled system develops rotating stall 

and � increases as shown in Figure 7.5d. This imposes a trajectory (cyan in Figure 7.5a) toward 

the unstable area and finally leads to fully developed rotating stall at OP2. Correspondingly, the 

output pressure drops as seen in Figure 7.5b.  

Although, the perturbations last to the end of simulation, as soon as the controller starts at ' = 300, the developed stall is damped out and pressure rise is corrected (Figure 7.5d and 7.5b 

respectively).  Figure 7.5a shows that the controlled system trajectory (green) returns to OP1 in 

finite time. Due to the presence of perturbations on the sliding surface (� = 0,� = 0), the 

control laws continuously switch to compensate their effect. Therefore chattering can be seen in 

Figure 7.5f-7.5g. Figure 7.5 is reported for g = 5 and �	 = �� = 125. 
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Our outcomes demonstrate that the choice of control design parameters (g, �	 , and ��) 

can modify the transient response of the system. 

 

 

 

 

Figure 7.5: FOSMC of rotating stall in the presence of external disturbances and model 

uncertainties 
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7.4.2 Second Order Sliding Mode Control 

In this case, we investigate the effectiveness of the SOSMC developed in (7.57). The 

system initially starts from OP1 when the controller is disabled to show the destabilizing effect of 

perturbations. The same perturbations as in the previous section are applied to the system. They 

push the system toward instabilities and the system settles down at a fully developed rotating stall 

OP (OP2) (see magenta trajectory in Figure 7.6a). At ' = 500, the controller starts and rapidly 

damps out rotating stall (see Figure 7.6d). Consequently, the system returns to the efficient OP1 

in finite time (see cyan trajectory in Figure 7.6a). 

Now, the system has converged to the defined sliding surface �L�E = 0 and �L�E = 0. On 

the sliding surface, control laws reject the effect of perturbations. At ' = 800, time varying set 

points are applied to the system as follows:  

�L�E = 0.0931 − ��.�9+P!���-5 

�L�E = −0.0731 − ��.�9+P!���-5 

As can be seen in Figure 7.6a-7.6c, the system smoothly follows the variations of 

setpoints and remains at the time varying sliding surface. The investigation of Figure 7.6f and 

7.6g reveals that the chattering disappears as expected in the analysis.  

In this simulation the control design parameters are g = 2, �		 = �	� = ��	 = ��� =

180, and p� = 0.75	(G = 1,2). 

7.4.3 SOSMC of Surge 

Here, the system is initially stable at OP1. At ' = 100, the same disturbances as before 

(see Figure 7.7e) lead to deep surge due to the selected value for B-parameter (� = 2). As shown 

in Figure 7.7a and 7.7c deep surge causes flow reversal. SOSMC given by (7.57) starts at ' = 350, immediately damps out surge oscillations, and stabilizes the system at desired initial 

OP. It is worth noting that although perturbations last until the end of simulation, chattering-free 

control laws effectively reject them. In this simulation the control design parameters are g = 2, �		 = �	� = ��	 = ��� = 180, and p� = 0.75	(G = 1,2). 



97 

 

 

 

Figure 7.6: Chattering-free SOSMC of rotating stall in the presence of external disturbances, 

model uncertainties and setpoint variations 
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Figure 7.7: Chattering-free SOSMC of surge 
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guarantees the exponential stablility of the tracking control design. The idea of considering the 

terms including rotating stall in the disturbances simplifies the control design and the proof of 

perturbation boundedness satisfies the conditions of the applied theorems.  

 

 

 

 

Figure 7.8: First order actuator dynamics and their effects on SOSMC as a limit cycle around the 

desired OP 
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The analytical analysis is corroborated by time-domain simulations reveals that the global 

asymptotic stabilization of the uncertain disturbed model can be achieved using a small number 

of control parameters. These parameters can determine transient response in reaching phase and 

perturbation rejection in sliding phase. The reasonable computation load and the fairly 

straightforward firmware implementation of developed chattering-free SOSMC make it an 

excellent choice for this application. Even a small enlargement in the domain of attraction of 

efficient OPs leads to a remarkable increase in performance and reliability of axial compressors 

and brings benefits to a wide range of users.  

Appendices 

A.  

Table 7.1: Numerical values used in simulations 
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Abstract 

Gas turbines are internal combustion engines, which require pressurized air, and are 

widely used in industrial and aeronautic applications. The pressurized air is delivered by air 

compressors suffering from two kinds of aerodynamic instabilities, namely, surge and rotating 

stall. These instabilities are deeply affected by speed dynamics. Indeed, speed transitions develop 

temporary rotating stall and cause pressure drop at the output. The pressure drop limits the 

performance and spells troubles for normal operation of gas turbines even far from unstable zone 

usually defined in terms of stall point or surge line. Despite considerable efforts to stabilize axial 

compressors based on a constant speed assumption, the simultaneous control of speed and 

instabilities in variable speed axial compressors has been an open problem. The highly nonlinear 

and uncertain model of compressors including external perturbations forms a complex problem to 

control design. Furthermore, the lack of a full-state feedback makes the problem more 

challenging. In the present work, this problem is tackled by using a nonlinear robust controller 

based on output feedback linearization. The controller initially transforms the system into a 

controllable canonical form and then guarantees the disturbance rejection and asymptotical 

boundedness of the state variables. It drives a feedback from mass flow and pressure rise to 

stabilize the instabilities by actuating both the throttle valve and close-coupled valve. Time 

domain simulations corroborate analytical developments and show the effectiveness of the 

controller in the presence of bounded external perturbations and model uncertainties. Here, the 

impact of actuators’ saturation is also studied. 
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8.1 Introduction 

Gas turbines are commonly used in nowadays aircraft jet engines. Petroleum and 

chemical industries rely also on turbo compressor stations to pressurize products. Furthermore, 

gas turbines are effectively used to generate electricity across the power generation sector 

worldwide. These machines are known to suffer however from instabilities, namely, rotating stall 

and surge, which occur in the compressor stage and badly limit the performance of the system. 

Modeling the nonlinear behavior of compression systems and that of ensuing rotating stall and 

surge has been explored for decades. A wide variety of models exist for this purpose, each with 

its own strengths and limitations. Among these models, the lumped parameter Moore and 

Greitzer three-state model (so-called MG3) [36] describing both surge and rotating stall 

dominates the studies on control design of compression systems. Contrary to axial compressors, 

which are affected by both surge and rotating stall, the instability of centrifugal compressors is 

almost restricted to surge considerations [6, 104]. Consequently, in the case of centrifugal 

compressors, Greitzer model [18] which comprises only two state variables can capture the 

behavior of surge. 

The main advantage of MG3 and its extensions is that they are not computational and can 

be used for control design purposes. On the other hand, they suffer from important limitations 

including a single-mode approximation of rotating stall and a constant-speed assumption. In 

1997, Fink et al. [44] and subsequently Gravdahl and Egeland [45] presented a model for variable 

speed centrifugal compressors that incorporates the speed of the rotor as a state variable. 

However, these models were both developed for centrifugal machines, and did not capture 

rotating stall in axial compressors. In 1998, Gravdahl [46, 47] considered the speed of the rotor as 

a state variable and introduced a new model for variable speed axial compressors (VSACs). This 

extension of MG3 includes higher harmonics (modes) of rotating stall as well. The early work of 

Gravdahl [47] briefly reported some exclusive behavior of VSACs, which cannot be captured by 

constant-speed models such as MG3. His time-domain simulation results showed that contrary to 

what MG3 predicts, rotating stall can temporarily develop during speed transitions even while 

operating far from the unstable zone traditionally defined in term of stall point or surge line. The 

problem of variable speed compressor control design is one of the topics which is proposed for 

further research in Moore and Greitzer work [36] and Gravdahl’s research [47]. Gravdahl 
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highlighted the need for simultaneous speed and surge/stall control to guarantee the performance 

of compression systems in both normal operation and during speed transitions. Despite devoted 

efforts on stabilizing axial compressors being based on the constant speed assumption and the 

reported achievements (see [47, 50, 123, 129, 134, 140, 141]) , the simultaneous control of speed 

and instabilities in VSACs has remained an open problem. The highly nonlinear model of 

VSACs represents a complex problem for control design. Furthermore, including model 

uncertainties (the precise estimation of model parameters, especially in the unstable zone, being 

difficult) and external perturbations make the problem even more challenging. Finally, the 

squared amplitude of stall modes used as state variables are experimentally difficult to measure 

and full-state feedback cannot be considered in control design.  

Here, we propose a robust feedback linearization method to tackle the stability problems 

of VSACs. The control law is based on speed, pressure and mass flow measurements. Mass flow 

is frequently used in some control design methodologies in the literature [114, 115], and there 

exist some implemented controllers that use this measurement [116]. Nonlinear observers are also 

proposed to estimate mass flow [117, 118]. In this work, throttle and close-coupled valve (CCV) 

actuation are used to guarantee the stability, and a drive torque is applied to increase the speed of 

the rotor. CCV is considered to be one of the most promising actuation methods [92-94]. To 

develop the controller, the amplitude of rotating stall, which cannot be measured but is one of the 

state variables in Gravdahl’s model, is considered as a disturbance. This assumption being 

supported by the proof of perturbations boundedness greatly simplifies the design. Furthermore, 

the control scheme does not require an accurate knowledge of model parameters. Simulation 

results corroborate analytical developments and demonstrate the disturbance rejection and the 

global ultimate boundedness of state variables which leads to surge and rotating stall control.  

The rest of the paper is organized as follows. Section 8.2 recalls the Gravdahl model for 

VSACs. Section 8.3 describes the control design and considers the assumptions involved. Section 

8.4 examines the hypotheses and investigates the applicability of the control design to VSACs. 

Section 8.5 reports time-domain simulation results and explores the effect of actuators’ 

saturation. Conclusions about this work are drawn in Section 8.6. 

8.2 Dynamic Equations for VSACs 
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In 1998, Gravdahl developed a model for VSACs and considered the speed of the rotor as 

a state variable [47]. Later, Zaiet et al. [168] modified the model to include the pressure drop over 

a CCV and to make it suitable for control applications. At an operating point (Φ�, Ψ�, Ω�), the 

dynamic model can be given in the form of state-space equations in error coordinates (see [47] 

for details). The model which is only includes the first harmonic of rotating stall and comprises 

actuator forces, is given in Σ	:	(8.1)-(8.4).  

��	 = b��	 �1 − �	(56��)	
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Q6Ω�

�� + Φ� − 4� + Ψ�1� − Δ5	 −
�%�
%�

�� + Ψ���q + Ω����1� − O(� + Φ�)���     (8.3) 

q� = #	(q + Ω�)�(1� − O(� + Φ�	)
�)                                                                                      (8.4) 

where 	�, �, and q denote respectively the annulus averaged mass flow coefficient, the non-

dimensional plenum pressure, and the speed of the rotor in error coordinates. �	 is the squared 

amplitude of the first harmonic of rotating stall. The actuators’ forces are input variables 1	, 1�, 

and 1� defined respectively as: the pressure drop over CCV, the throttle gain, and the non-

dimensional drive torque being used to increase the speed. The definition of the remaining model 

parameters �, �, ���, 
3, Λ	, Λ�, +, �, -, �, b	, and b�, which are all positive non-zero 

parameters, can be found in [47]. To investigate the effect of uncertainties, we introduce 75 and 7" in the model. 75 consists of two terms : Φ� which is a time varying mass flow disturbance 

and 85 which introduces a constant or slow varying  uncertainty in the throttle characteristic. 

Similarly, 7" consists of two terms: Ψ� which is a time varying pressure disturbance and 8" 

which can be thought of as a constant or slow varying uncertainty in the compressor map. 

Furthermore, it is supposed that these uncertain terms are bounded. 

Here, the domain of interest is a subset > ⊂ ℛ� where � + Ψ� > 0 and the mass flow of 

compressors is always limited to �,�( < � + Φ� < ��=>?�  , where ��=>?� is the choking value 
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of the mass flow and �,�( is the minimum negative mass flow during deep surge (see [47] for 

more details). In the literature [169, 170], there exist also other assumptions on the speed of rotor 

which state that 0 < q + Ω� < Ω,*;.  

8.3 Control Design 

The control objective is to stabilize Σ	 at origin. By considering the following control 

inputs: 

1	 = −� − Ψ� + ��� + � +
��
�
�56��
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�
�56��
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1� = O(� + Φ�)� − I�q                                                                                                            (8.7) 

Σ	 can be written as follows: 

Σ�:

rs
t
su�	� = !��	,�,q�																										�� = −I	� + 0																										�� =

%�
Q6Ω�

(−I�� + 0�)											q� = −#	(q + Ω�)�I�q + 0�= = D�,�,qE�																											
                                                                                           (8.8) 

where I� are design parameters. 
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Here !(�	,�,q) is continuously differentiable in the domain of interest and !(0,0,0) = 0.  

Lemma 1: Consider system	Σ�, and suppose that 0 is bounded (‖0(�	, x)‖ ≤ l) and 	��	 =!��	,�,q� is globally in the domain of interest input-to-state stable, then by choosing positive 
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gains (I� > 0), the state variables ��	, x�	where x = [�,�,q] converge to a residual subset 

around the origin and are bounded. 

In order to prove Lemma 1, we firstly test the two formed hypotheses. 

Hypothesis 1: 0 is bounded (‖0(�	, x)‖ ≤ l). 

Hypothesis 2: 	��	 = !��	,�, q� is globally (in the domain of interest) input-to-state stable.  

It is worth noting that here,	1� is used to only change rotor speed and 1	 and 1� guarantee the 

stability of the system during the speed variations. 

Test of Hypothesis 1  

The objective is to prove that 0 is bounded. Recall that in the domain of interest, the 

averaged mass flow � and the rotor speed are bounded, �,�( < � + Φ� < ��=>?�, 0 < q +

Ω� < Ω,*; so it remains to show that �	�(� is bounded as well.  

To prove this, the dynamics of  �	 , i.e., (8.1) are first rewritten as: 

y��	 = b��	 �*	 −
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+ !�(��			�	�0� = �	� ≥ 0																																																																																	       
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3�
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��� +
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*� ≜
2Ω��+ − 1��I�

3�� > 0, 

*� ≜ −
4�

3�
3� +
2� −

2Φ��� . 

Then: 

��	 = b�*	�	 −
b��	�

4
+ b��	!�(� ≤ b�*	�	 −

b��	�
4

+ b�6�	 ≜ M�	 − *��	�, 

where *� ≜
S�
�

 and M is such that 6 ≥ |!(()| for all ( ≥ 0  and, without loss of 

generality, chosen so that, M ≜ b�(*	 + 6) is non zero. 

It therefore follows from comparison theorems [171] that: 
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�	�(� ≤ z�(�							∀			( ≥ 0  

;z��(� = Mz�(� − *�z�	z�0� = �	�																				     
The solution of which is given by: 
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Therefore z�(� does not have a finite escape-time. Consequently: 
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The boundedness of Δ5, Δ",
3 ∈ [
,�(, 
,*;], and �	 lead to the boundedness of 0 which confirms 

Hypothesis 1. 

Test of Hypothesis 2  

The objective here is to show that ��	 = !��	,�, q� = 	!��	, m� with m ≔ D�,qE, is input-

to-state stable. Theorem 4.19 [172] states that if there is a continuously differentiable function 

.	:� → � such that  

M	�‖�	‖� ≤ .	��	� ≤ M��‖�	‖� {.	{�	 !��	,1� ≤ −���	�, ∀	‖�	‖ > b�‖m‖� > 0 

where M	, M� are class |7 functions, b is a class | function , and �(�	) is continuous positive 

definite function on �. Then ��	 = !��	, m� is input-to state stable. 

Considering the Lyapunov function .	��	� =
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4
3−�	 + 4*�q�(� + 4*���(�5 
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where *� are as above. 

Let \(() ≜ 4*�q�(� + 4*���(� then:  

\�(� ≤ 4|*�}|q| + 4|*�}|�| ≤ 4max�|*�|, |*�|� ‖�‖∞
=: 	‖�‖

∞
 

then:  .	� ≤ *	�	� +
�
�

�
�−�	 + 	‖m‖7� ≤ *	�(�	) 

with 	���	� ≜ �	� , a positive definite function and *	 < 0. Then provided that:  −�	 + 	‖m‖7 ≤

0, i.e.,  �	 = 	 ‖�	‖7 ≥ 	‖m‖7 = 	b�‖m‖7� which proves input-to-state stability of the ��	 =!��	,�,q� = 	!��	, m�. 
Proof of Lemma 1:  

Let .��x� =
	
�
x�x which is a positive definite function of x then: 

.���x� = −x�x� = −I	�� + 0	� +
#�q + Ω�

(−I��� + 0��)−#	I��q + Ω���q�		 
.���x� ≤ −

1

2
I	�� −

#�I�
2�q + Ω�� ��−#	I��q + Ω���q�

− ~I	
2
�� − ‖0	‖‖�‖ +

#��q + Ω�� �I�2 �� − ‖0�‖‖�‖�� 

As a conservative choice, in a neighborhood of the origin where ‖�‖ ≥
�
R�

‖0	‖ and ‖�‖ ≥

�
R�

‖0�‖ then:  .���x� ≤ −��(�,�,q) 

where ����,�,q� =
	
�
I	�� +

%�R�
�+Q6Ω�-

�� + I�#	�q + Ω���q� is a positive definite function. 

Higher feedback gains I� clearly imply a smaller size for this neighborhood of the origin.  

By applying Theorem 4.18 in [172] and considering a bounded uncertainties ‖0(�	, x)‖ ≤l  , we can show that a finite time (� and a positive constant O exist such that: ‖x‖� ≤ Ol, ∀	( ≥(� and O can arbitrarily be small by an appropriate choice of I�.  
By input-to-state stability of 	��	 = !��	,�,q�, we have : 

‖�	�(�‖� ≤ *�‖�	�0�‖�, ( − (�� + 
(sup
�V��

‖x�(�‖�) ≤ *�‖�	�0�‖�, ( − (�� + 
(Ol) 
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where * and 
	are class |ℒ and class | functions, respectively. The term *�‖�	�0�‖�, ( − (�� 
satisfies * ≤ l after some finite time. Therefore ‖�	, x‖� is ultimately bounded by Ol + l +
(Ol). Finally, Lemma 1 states that by using the proposed controller 1 given in (8.5-7) the state 

variables converge to a neighborhood of the origin and consequently they are bounded. 

8.4 Results and Discussions 

In the following time-domain simulations, we compare two cases: 1- a system including 1� changing the rotor speed but without surge and rotating stall control  (1	 and 1�) which is 

called open-loop and 2- a system including (1	,1�,1�) where we simultaneously control the 

speed and surge/rotating stall which is called closed-loop.  

The numerical values of the simulations are given in Table 8.1.  

8.4.1 Temporary Stall Control in the Case of Unsaturated Actuators 

The problem of temporary stall development is tackled in this section. Time-domain 

simulations compare open-loop and closed-loop systems and demonstrate the effectiveness of the 

controller in preventing the compressor from developing temporary rotating stall and pressure 

drop. Figures 8.1a, b, c, and d show the systems’ trajectories (Φ, Ψ, Ω, J	) during a speed 

transition without actuator saturation.  

Table 8.1: Numerical values used in simulations 

 

 

 

 

 

 

 

For the open-loop system and during the speed transition, dashed lines in Figure 8.1b and 

d report a pressure drop and a temporary rotating stall development respectively. For the closed-

�� 3 � 0.425 � 0.25 - 0.001 � 0.18 � 96.17 � for rotating stall 0.1 + 1.75 � for deep surge 2 �/ 2 #	 2.1685e-4 #� 0.0189 � 0.3 0 < b	 < 1,  0 < b� < 1 
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loop system, the controller completely damps out the temporary stall and prevents the pressure 

from dropping (see Figure 8.1b and 8.1d bold trajectories). The variation of flow is reported for 

both system in Figure 8.1a and the speed variation is shown in Figure 8.1c.  

Figure 8.2 shows the variables Φ and Ψ in the phase space along with equivalent 

compressor map and stall characteristic. Both open-loop and closed-loop systems start from an 

effective initial operating point (OP) at the top of the equivalent compressor map (i.e. compressor 

comprising CCV, see [47] for the exact definition). In Figure 8.1a, the open-loop system’s 

trajectory (Φ, Ψ) goes back to the initial OP once the rotor speed reaches the desired value, but 

only after considerable variations due to temporary stall development. For the case of closed-loop 

system, thanks to the effective controller, this variation is negligible.  

 

 

 

Figure 8.1: Open-loop system (dashed) and closed-loop system without saturation (bold) 
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Figure 8.2: (a) Open-loop and (b) closed-loop (unsaturated actuators) 

 

Figure 8.3: Control efforts for closed-loop system without actuators’ saturations 

Figure 8.3 finally shows the three control efforts of the closed-loop system with 

unsaturated actuators.  

8.4.2 Temporary Stall Control in the Case of Saturated Actuators 

Here, a saturation is added to each actuator to limit the control efforts. Figure 8.4 reports 

the impact of actuators’ saturations on the closed-loop system.  
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Figure 8.4: Closed-loop with saturated actuators  

 

Figure 8.5: Open-loop system (dashed) and closed-loop system with saturation (bold) 

Figure 8.5 compares the closed-loop and open-loop system state variables. It is interesting 

to note that, although the controller cannot completely prevent the pressure drop because of 

actuators’ saturations, it still suppresses rotating stall and achieves a considerable improvement 

by comparison to the open-loop system. Again, Figure 8.6 shows the saturated control efforts. 
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Figure 8.6: Control efforts for the closed-loop system with actuators’ saturations 

8.4.3 Fully developed Stall Due to Speed Variations 

As reported in [173] when speed varies at an efficient operating point (e.g. at the peak of 

the equivalent compressor map), temporary stall developments can lead to a fully developed 

rotating stall. Here, we will show that the proposed controller prevents the system from 

developing such a rotating stall. Figure 8.7a firstly shows that the open-loop system moves from 

the initial OP to the final fully developed rotating stall OP due to a speed transition. Figures 8.7e 

and 8.7c show the stall development and the pressure drop at the output respectively. 

Figure 8.8 shows that on the other hand in closed loop, the controller effectively stabilizes 

the compression system at the efficient OP and prevents it from developing a steady rotating stall 

due to the speed variation. Output pressure, rotor speed, rotating stall, and control efforts are 

respectively reported in Figure 8.8c to 8.8f.   
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Previously reported results in [47] show that pressure and flow external perturbations can 
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.2

0

0.2

time

u
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

time

u
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

time

u
3

saturated control effort 



114 

 

  

Figure 8.7: Open-loop system develops steady rotating stall due to a speed variation  

 

  

 

Figure 8.8: Controller prevents system from developing rotating stall due to a speed transition 
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To realize the simulations two types of perturbations are applied to the system denoted by 

Φ�, Ψ�, ��, and ��. Φ� = Ψ� = 0.01���	(0.2�) are considered as mass flow and pressure 

disturbances respectively and �� = 0.02, �� = −0.05 which represents the uncertainty of 

compressor map and throttle characteristic. 

In Figure 8.9a, the system initially starts from OP1 when the controller is not activated. 

Perturbations are applied to the system at � = 10000 (see Figure 8.9g). The system develops then 

rotating stall and goes to OP2 (i.e. in this case final speed is not high and implies stall 

development see Figure 8.9e). Although the perturbations are removed at � = 12000 the open-

loop system remains at OP2 (see Figures 8.9c and 8.9e for pressure drop and amplitude of stall).  

 

  

Figure 8.9: Effect of perturbation on open-loop and closed-loop systems  
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At � = 15000 the controller is activated and closes the loop. It immediately damps out 

rotating stall and increases the pressure. Consequently the system returns to its initial efficient OP 

(OP1) where the pressure is high enough for normal operation of the gas turbine. 

Figure 8.10 reports the effectiveness of the controller for long-lasting perturbations. Here, 

the perturbations are applied at � = 10000 and remain until the end of the simulation (Figure 

8.10g). Figures 8.10c and 8.10e show that when the controller is activated at � = 15000, the stall 

is damped out and the output pressure is stabilized. Therefore, the controller guarantees the 

stability of the compression system even in the presence of bounded external perturbations.  

 

   

  

Figure 8.10: Effectiveness of the controller in the presence of perturbations  
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Last but not least is the case of deep surge. We run the same simulations but for high 

speed operations (Figure 8.11). The open-loop system initially starts at OP1. At � = 3000, 

perturbations are applied to the open-loop system. Due to the perturbation and the high rotor 

speed (see Figure 8.11d) the open-loop system goes to deep surge. A flow reversal can be seen in 

Figure 8.11a and 8.11b. At � = 6000, the controller is activated and immediately damps out deep 

surge oscillations. Again, this simulation shows the effectiveness of the proposed control law in 

surge control. 

 

  

  

 Figure 8.11: Surge control in the presence of perturbations  
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8.5 Conclusion 

Surge and rotating stall limit compression systems performance and can cause mechanical 

damages. Furthermore speed transitions, which can lead to temporary stall development and 

pressure drop at the output, degrade the effective operation of compressors and consequently gas 

turbines. The pressure drop can be prevented by slow speed variations which introduce severe 

restrictions on the effective operation and results in large penalties in performance. This 

highlights the need for a simultaneous control of speed and instabilities in VSACs which are 

widely used in aeronautics and industries. 

In the present work, a robust nonlinear control method based on feedback linearization is 

applied to tackle this open control problem. The proposed controller does not require the precise 

knowledge of the compressor map and does not use a full-state feedback. The only assumption 

made here is the boundedness of external perturbations and model uncertainties. Under this 

assumption the developed control law can guarantee global asymptotic boundedness of model 

state variables. Time-domain simulations demonstrate that the controller can damp out system 

instabilities including surge or rotating stall, prevent the system from developing temporary 

rotating stall during speed variations and effectively reject external perturbations. Time-domain 

simulations also show how the actuator saturations can affect the effectiveness of the controller. 

This highlights the need for an adaptive method to estimate the saturations and adapt the control 

parameter for optimal performance in future work. 

Finally, by taking advantage of simultaneous speed and surge/stall control methods, one 

can stabilize VSACs in all operation conditions. A wide range of machines using compressors 

can then obtain higher performance and greater operational reliability. 
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CHAPTER 9 

GENERAL DISCUSSION 

The present work explores the qualitative behavior of VSACs’ model by using detailed 

bifurcation analyses and time-domain simulations in Chapter 4 and 5. These chapters explore the 

effect of different model parameters and reveal the impact of speed transitions on the stability of 

compression systems. The results show that a compression system, which is variable speed in 

nature, suffers from temporarily developed instabilities which may lead to a steady and fully 

developed rotating stall or surge. Consequently, these machines need to be controlled even far 

from unstable zones and even in the absence of external perturbations. This shows that the simple 

industrial solutions being based on maintaining a sufficient stability margin far from the unstable 

zone, which reduces performance, cannot guarantee the stability during speed transitions.  

The robust control of compression systems is a matter of importance. Including the model 

uncertainties and external perturbations forms a challenging problem. Furthermore due to the 

impracticality of full-state feedbacks, control approaches which require sensing the squared 

amplitude of rotating stall to form the feedback fail to be practically implemented. Chapter 6 and 

7 tackles the robust stability of CSACs and propose solutions which guarantee the reliable 

operation of the system at efficient operating points in the vicinity of unstable areas. These 

methods drive the feedbacks only from flow and pressure measurements and apply control laws 

using throttle valve and CCV actuations. Time-domain simulations corroborate the analytical 

developments and report the effectiveness of the designs. External perturbations and model 

uncertainties, which destabilize the open-loop systems, are completely rejected in close-loop. 

Chapter 7 explores the effect of actuator dynamics to convey an idea about the impact of this key 

issue. Time-domain simulations show that first-order actuator dynamics can degrade the 

performance of SMC and lead to a limit cycle around the desired OP.   

The robust control design of CSACs sheds some light on the problem of VSACs’ control. 

The simultaneous speed control and rotating stall and surge stabilization is achieved in Chapter 8. 

A robust feedback linearization method is proposed to tackle the problem. The controller 

stabilizes all the developed instabilities being caused by speed transitions, model uncertainties 

and external perturbations. Finally, Chapter 8 also explores the effect of actuator saturations. 
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Time-domain simulation shows that the proposed method can cope with actuator saturations and 

damps out the rotating stall. Although the output pressure slightly drops during rapid speed 

transitions due to the saturation, it shows a great improvement in comparison with pressure drops 

in open-loop systems during the same variations.            
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CHAPTER 10 

CONCLUSION 

The stability of compression systems in different applications has been addressed by 

researchers for decades. Reliable and high performance compressors as integrated parts of gas 

turbines benefit turbo-compressor stations, turbo-generators and jet engines. In this work, the 

instabilities of axial compressors are investigated and the effect of speed dynamics on the 

behavior of compression systems is studied. This firstly broadens our knowledge about key issues 

in the context of compressors modeling, and secondly sheds some lights on the control of 

compression systems. Here, by defining the rate of speed variations as a new bifurcation model 

parameter, a new series of time-domain simulations and detailed bifurcation analysis are 

provided. They show that contrary to previous results, the speed transitions can cause deep surge 

and fully developed rotating stall even in the absence of external perturbations. This highlights 

the need for robust control approaches which guarantee rapid speed variations and safe operation 

of the system at an efficient OP. 

From the control point of view, the proposed methods for CSACs achieve robust stability 

of the system which has been a challenging problem. Furthermore, a simultaneous speed and 

surge/stall control method stabilizes VSACs during the speed transitions. These robust methods 

reject the external perturbations and model uncertainties and do not need full-state feedbacks. By 

taking advantage of such robust control approaches a wide range of machines using compressors 

can then obtain higher performance, greater operational reliability, and less fuel consumption. 

Although the impact of actuator dynamics and saturations is addressed here, it needs to be 

carefully investigated. The future work on this topic includes the development of an adaptive 

control method to satisfy the operational speed transition requirements and prevent the system 

from going to saturated zones of actuators which limit the performance of the controller.   
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APPENDIX A  

Bifurcation  

The literature on the theory of bifurcations is enormous: for example, the bibliography in 

[174] contains over 700 entries. Shiraiwa [175] collected a bibliography of 4405 entries on 

dynamical systems. The formal foundations of bifurcation theory were created by Andronov and 

his students. Their theory was motivated by their investigations of applied problems. In 

particular, they studied in detail the birth of cycles at bifurcations when an equilibrium loses its 

stability, the case of “Hopf bifurcation” [176]. 

When a system loses stability, the number of eigenvalues which are associated with this 

change is typically small. Hence bifurcation problems usually involve stable part “critical” modes 

which change from stable to unstable as the bifurcation parameter exceeds a threshold. The 

central idea of bifurcation theory is that the dynamics of the system near the onset of instability is 

governed by the evolution of these critical modes, while the stable modes follow in a passive 

fashion. In this work, to present the impact of parameters on qualitative behavior of the system a 

parameter vector is firstly introduced in the vector field as �� = ���, ��                                    

where	� ∈ �	�, � ∈ �	� represent respectively phase variables and parameters. Consider the 

phase portrait of the system. As the parameters vary, the phase portrait also varies. There are two 

possibilities: either the system remains topologically equivalent to the original, or its topology 

changes (i.e. two topologically equivalent systems must have the same orientation properties, e.g. 

near a hyperbolic fixed point the system is locally topologically equivalent to its linearization). 

Definition A.1: Bifurcation: The appearance of a topologically nonequivalent phase portrait 

under variation of parameters is called a bifurcation [146].  

Definition A.2: Bifurcation Diagram: The parametric portrait together with its characteristic 

phase portraits constitute a bifurcation diagram. [146]. 

Definition A1.3: Bifurcation Boundries: In the simplest cases, the parametric portrait is 

composed by a finite number of regions in �	�. Inside each region the phase portrait is 

topologically equivalent. These regions are separated by bifurcation boundaries, which are 

smooth submanifolds in �	� (i.e. curves, surfaces). A bifurcation boundary is defined by 
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specifying a phase object (equilibrium, cycle, etc.) and some bifurcation conditions determining 

the type of its bifurcation (Hopf, fold, etc., e.g. the Andronov-Hopf bifurcation of an equilibrium, 

which is discussed later, is characterized by one bifurcation condition, namely, the presence of a 

purely imaginary pair of eigenvalues of the Jacobian matrix evaluated at this equilibrium). When 

a boundary is crossed, the bifurcation occurs [146]. 

In the present work, we concentrate on three types of local bifurcation: Fold Bifurcation, 

Pitchfork bifurcation, and Hopf bifurcation. 

A.1 Fold Bifurcation [146] 

Consider a continuous-time system depending on a parameter  

�� = ���, ��							, � ∈ ��, � ∈ �																																																																																(	. 1) 

where 	 is smooth with respect to both 
 and �. Let 
	 = 	 
� be a hyperbolic equilibrium (i.e. all 

eigenvalues have non-zero real parts) in the system for 	� = �� . Under a parameter variation, we 

can monitor the movement of the equilibrium. There are, generically, only two ways in which the 

hyperbolicity condition can be violated. Either a simple real eigenvalue approaches zero and we 

have �� 	= 	0, or a pair of simple complex eigenvalues reaches the imaginary axis and we have 

��,� = ��	, �� > 0 for some value of the parameter. The bifurcation associated with the 

appearance of λ� 	= 	0 is called a fold bifurcation (Figure A.1). This bifurcation has a lot of other 

names, including tangent, limit point, saddle-node bifurcation, and turning point. A fold 

bifurcation is reported in the bifurcation diagram of MG3 under the variation of �� which is 

pointed out as ��. 

 

 

Figure A.1: Fold bifurcation 
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A.2 Pitchfork Bifurcation  

 In this bifurcation, from the loss of stability by a symmetric equilibrium, two new, less 

symmetric, equilibria branch out. In this process the symmetric equilibrium position continues to 

exist, but it loses its stability [176]. The name pitchfork bifurcation comes from the form of the 

branches of equilibria in the bifurcation diagram. 

 In many physical situations the problem possesses some symmetry. The simplest one that 

occurs in one dimension is the reflection or symmetry: 
	 → −
	.	In this section we discuss this 

situation and the corresponding generic bifurcation, which is the pitchfork bifurcation. 

We consider a scalar differential equation (�. 2)  

�� = ���, ��																																																																																																																																			(	. 2) 

and now make the following assumptions. 

Hypothesis A.1: Assume that the vector field in (A.2) is of class �	 , � ≥ 3, in a neighborhood of 

(0,0), that it satisfies (�. 3), and that it is odd with respect to 
 i.e., 	�−
, �� = −	�
, ��. 

	�0,0� = 0,						 �	�
 �0,0� = 0																																																																																																																		(�. 3) 

Further assume that  

��	���
 �0,0� ∶= � ≠ 0				, �
	�


�0,0� ∶= 6� ≠ 0																																																																																				(�. 4) 

An immediate consequence of the oddness property of 	 is that 	�0, �� = 0	for	all	�, so that 


 = 0 is an equilibrium of (�. 2) for all �. We continue by studying the truncated equation 

expansion of 	 (i.e. the higher order terms are ignored): 

�
�� = 	�
, �� = ��
 + �

																																																																																																																				(�. 5) 

 As for the full equation, 
	 = 	0 is equilibrium of this equation for all values of		� (i.e. 

recall that for an odd function, only, the odd degree terms of Taylor series has nonzero 

coefficients, because the derivative of an even function is odd and the derivative of an odd 

function is even. Also, the value of the odd function at 0 is 0).  
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Upon solving the equation	��
 + �

 = 0, we find that 
	 = 	0 is the only equilibrium of (�. 5)  

if ���	 ≥ 	0. For ���	 < 	0 there is an additional pair of nontrivial equilibria 
	 = 	±���/�	. As 

for the dynamics, the nonequilibrium solutions are monotone, with monotonicity determined by 

the sign of the function ��
 + �

. This function changes sign precisely at the equilibrium 

points, and a direct calculation leads to the diagram in Figure (A.2). 

 The qualitative behavior of the solutions changes when � crosses 0, so that �	 = 	0 is a 

bifurcation point. At this value, the trivial equilibrium 
	 = 	0 changes its stability, and a pair of 

equilibria having the same stability, but opposite to that of the trivial equilibrium, emerges for 

�	 > 	0 when ��	 < 	0, and �	 < 	0 when ��	 > 	0. Here we are in the presence of a pitchfork 

bifurcation. The cases in which the emerging nontrivial equilibria are stable are called 

supercritical, whereas the cases in which these equilibria are unstable are called subcritical.[177]. 

  

Figure A.2-a: Supercritical Pitchfork Bifurcation (b<0): left � > 0 and right � < 0 

Solid lines represent stable manifolds, while dotted line represents unstable one 

 

Figure A.2-b: Subcritical Pitchfork Bifurcation (b>0):  left � > 0 and right � < 0 

Solid line represents stable point, while dotted lines represent unstable ones 
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MG3 reports a subcritical pitchfork bifurcation at the top of the compressor map where 

Φ = 2� which is pointed out as BP in Chapter 3 (similar to Figure A.1-b right).   

A.3 Andronov-Hopf Bifurcation  

 Historically, this kind of local bifurcation was known to Poincaré but first published in 

1939 by Andropov and later published independently in 1941 by Hopf. It is usually referred to as 

the Hopf bifurcation theorem or better as the Andropov-Hopf bifurcation theorem [178].  

 A Hopf bifurcation point connects stationary solutions with periodic solutions. In fact, the 

preceding bifurcation where a stable fixed point continuously changed into a stable periodic orbit 

was a so-called supercritical Hopf bifurcation. In contrast to this, in a subcritical Hopf 

bifurcation, an unstable periodic orbit coalesces into a stable fixed point so that the latter 

becomes repelling and no stable orbit is present anymore in its vicinity when the relevant 

parameter passes the bifurcation value. Thus, the dynamic behavior undergoes a discontinuous 

transition [179]. 

In this section we consider differential equations in ��, 


� = 	��
, ��																																																																																																																																															(�. 6) 

Now the unknown x takes values in ��, just as the vector field �, which depends again besides 

depending on x, upon a real parameter �. We assume that the vector field � is of class �	, �	 ≥

	3, in a neighborhood of (0,0), satisfying 

��0,0� = 	0																																																																																																																																																��. 7� 

 Again, this condition shows that 
 = 0 is an equilibrium of (�. 6) at �	 = 0.We are 

interested in (local) bifurcations which occur in the neighborhood of this equilibrium when 

varying the parameter �. Hopf bifurcation is a generic bifurcation in two dimensions. The 

appearance, or the absence of bifurcations is determined by the linearization of the vector field at 

(0,0) and bifurcation occurs when the Jacobian matrix � possesses a pair of purely imaginary 

complex conjugated eigenvalues. In this case the generated limit cycle is orbitally stable if a 

certain quantity called the first Lyapunov coefficient is negative, and the bifurcation is 

supercritical. Otherwise it is unstable and the bifurcation is subcritical.  
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Example: 

�
�� = −
� + 
�(� − 
�� − 
��)
�� = 
� + 
��� − 
�� − 
���			 																																																																																																													(�. 8) 

A straightforward investigation shows that 
� 	= 
� 	= 	0 is the only equilibrium for all �	and 

there is no stationary bifurcation. The Jacobian matrix is: 

 = !� −1

1 � " 
has eigenvalues � ± . We conclude that the equilibrium is stable for �	 < 	0	and unstable for 

� > 0		that is, there is a loss of stability at 		� = 	0 . 

A limit cycle can be constructed for equations (�. 8). Using polar coordinates #, $ with 


� = #%&�$, 
� = #���$ 

#�%&�$ − #$����$ = −#���$ + #%&�$(� − #�) 

#����$ − #$�%&�$ = #%&�$ + #���$(� − #�) 

Multiplying the first equation by %&�	$ and the second equation by ���	$ and adding yields the 

following differential equations: 

�#� = #(� − #�)$� = 1																	 
For		# = √�	, we have	#� = 0. Hence, there is a periodic orbit #��� ≡ √�	, $��� = �	for	� > 0, 

and the amplitude of the orbit grows with √� . Because #� < 0	for # > √� and #� > 0	for 0 < # <

√�	the orbit is stable. For varying �, the orbits form a branch, which merges at �� 	= 	0 with the 

branch of equilibria [150]. Figure (A.3) summarizes the results. 

Bifurcation analysis of MG3 reports a Hopf bifurcation in the case of high (-parameters (see 

Chapter 3). 
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Figure A.3: Generation of stable limit cycles at  � > 	0 (parameter-dependent phase plane) 

Supercritical Hopf bifurcation at  � = 	0  
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APPENDIX B  

Continuation Method and Numerical Bifurcation Analysis  

Bifurcation analysis as a standard, accepted and efficient approach for studying nonlinear 

dynamical system is being used. This analysis not only can validate the time-domain simulation 

outcomes but also can reveal significant aspects of dynamical systems’ qualitative behaviors 

which are hard to be predicted by time-domain simulations. By this method and by comparing 

bifurcation analysis outcomes and time-domain results, one can refine his approaches, enhance 

model’s simulations, and bring the developments into new alignment to achieves targeted results. 

Here, to study the qualitative behavior of compression systems and to verify the simulation 

outcomes, Matcont [180] and AUTO [181] packages are applied. 

Matcont provides a continuation and numerical bifurcation Matlab toolbox. This 

graphical package is also developed in a command line version “Cl_Matcont” under the 

supervision of W. Govaerts and Yu.A. Kuznetsov (see [182]). In this research, the results of 

Matcont are verified by time-domain simulations and by AUTO. The graphical interface of 

Matcont is compatible with the standard Matlab ODE representation of differential equations. 

Figure B.1 shows the MG3 model in the editor of Matcont. Coordinates of the system are 

respectively pressure rise (Psi), mass flow (Phi) and the squared amplitude of rotating stall (J). 

There are only two varying parameters:  B ((-parameter) and gt (�� throttle gain). 

 

 

Figure B.1: Specifying MG3 model in Matcont [183] 
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Numerical bifurcation analysis packages are based on the application of Implicit Function 

Theorem to investigate the topological behavior of dynamic systems. In what follows, Implicit 

Function Theorem and the basic principles of Continuation Method are briefly reviewed. 

B.1 Theorem: IFT (Implicit Function Theorem)  

Let )	 ∶ 		 �� × � → ��					 (including n state and one parameter) satisfies: 

���	)�
�, ��� = 0					, 
� ∈ ��			, 	�� ∈ � is the parameter. 

����	)��
�, ��� 		is nonsingular  (i.e.  
�  is an isolated solution). 

�����	)		and	)�	are	smooth	near	
�		. 
Then there exists a unique, smooth solution family 
(�) such that (see Figure B.2): 

	)�
���, �� = 0	, for	all	�	near	��	, 
���� = 
�	. 
In other words, IFT states that a given solution persists, at least locally, when a problem 

parameter is changed.  

Problems arise when the family of the solution meets a fold where IFT condition (ii) is not 

satisfied. Consider the equation: 

)�
, �� = 0	 ∶ 
, )�	.		,			. � ∈ ��	, � ∈ � 

 

 

Figure B.2: IFT 
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Let  + ≡ �
, ��, then the equation can be written as: 

)�+� = 0			,			): ��� → �� 

A solution +�  of   )�+� = 0	is regular if matrix )�
� ≡ )��+��	with n rows and n+1columns has 

maximal rank 	����	�)�
�� = �	.		We have then: 

����()�
� = ����,)�

�-)�

�. = �	 ⇔
01
2���	)�

�		is	nonsingular			,&3
���� 4��5 ℵ�)�

�� = 1						)�

� ∉ ℛ�)�
��												

  

where ℵ�)�
��		denotes the null space of 	)�

�  and 		ℛ�)�
��  denotes the range of 	)�

� . 

The case above is that of a simple fold. Thus even near a simple fold, there is a unique 

solution family. However, near such a fold, the family cannot be parameterized by �		. 
B.2 Numerical Continuation [149]: 

 Here we discuss algorithms for computing families of solutions to nonlinear equations. 

IFT is important in the design of such continuation methods. 

Parameter Continuation 

 The continuation parameter is λ	. Suppose we have a solution �
�, ���	of )�
, �� = 0		as 

well as the direction vector		
��	. 
where  
� ≡ �
 ��6    and we want to compute the solution 	
�		at		�� ≡ �� + Δ�	. 
 To solve the equation )�
�, 	��� = 0	, for	
�	�with	� = ��	fixed	�		we	use	789�&���	58�ℎ&�: 

)��
�� , ���Δ
�� = −)�
�� , ���, : ∶ 	the	itteration = 0,1,2, …	 

��� = 
�� + Δ
�� 

 As initial approximation, one can use  
�� = 
� + Δλ	
�� . If )��
�, ���	is	nonsingular	and 

∆�		is sufficiently small, then the Newton’s convergence theory guarantees that this iteration will 

converge. After convergence, the new direction vector 	
��		can be computed by solving: 

)��
�, ���	
�� = −)�
�, ��� 
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This equation follows from differentiating )�
���, �� = 0		with respect to � = ��	. In practice, in 

order to compute the continuation of a solution family past a fold    Keller’s pseudo-arclength 

continuation method is used in the literature.  The Jacobian of the pseudo-arclength system is 

nonsingular at a fold point. 

Following Folds 

 When a parameter passes a fold, then the behavior of a system can change drastically. 

Thus it is useful to determine how the location of a fold changes when a second parameter 

changes, i.e., we want the compute a critical stability curve, or a locus of fold points, in             

two-parameter space. Similar studies can be carried out to investigate the behavior of the system 

in other local and global bifurcation points. This leads to analyze the qualitative behavior of the 

system in the range of parameters variations. 
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