13,987 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Spectrum- and Energy-Efficient Radio Resource Allocation for Wireless Communications

    Get PDF
    Wireless communications has been evolved significantly over the last decade. During this period, higher quality of service (QoS) requirements have been proposed to support various services. In addition, due to the increasing number of wireless devices and transmission, the energy consumption of the wireless networks becomes a burden. Therefore, the energy efficiency is considered as important as spectrum efficiency for future wireless communications networks, and spectrum and energy efficiency have become essential research topics in wireless communications. Moreover, due to the exploding of number mobile devices, the limited radio resources have become more and more scarce. With large numbers of users and various QoS requirements, a lot of wireless communications networks and techniques have emerged and how to effectively manage the limited radio resources become much more important. In this dissertation, we focus our research on spectrum- and energy-efficient resource allocation schemes in wireless communication networks. Recently, heterogeneous networks (HetNets) have been proposed and studied to improve the spectrum efficiency. In a two-tier heterogeneous network, small base stations reuse the same spectrum with macro base stations in order to support more transmission over the limited frequency bands. We design a cascaded precoding scheme considering both interference cancellation and power allocation for the two-tier heterogeneous network. Besides heterogeneous networks, as the fast development of intelligent transportation, we study the spectrum- and energy-efficient resource allocation in vehicular communication networks. The intelligent transportation and vehicular communications both have drawn much attention and are faced special wireless environment, which includes Doppler effects and severe uncertainties in channel estimation. A novel designed spectrum efficiency scheme is studied and verified. With consideration of energy efficiency, the device-to-device (D2D) enabled wireless network is an effective network structure to increase the usage of spectrum. From a device\u27s perspective, we design an energy-efficient resource allocation scheme in D2D communication networks. To improve the energy efficiency of wireless communication networks, energy harvesting technique is a powerful way. Recently, the simultaneous wireless information and power transfer (SWIPT) has been proposed as a promising energy harvesting method for wireless communication networks, based on which we derive an energy-efficient resource allocation scheme for SWIPT cooperative networks, which considers both the power and relay allocation. In addition to the schemes derivation for spectrum- and energy-efficient resource allocation, simulation results and the proofs of the proposed propositions are provided for the completeness of this dissertation

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Interference Management Based on RT/nRT Traffic Classification for FFR-Aided Small Cell/Macrocell Heterogeneous Networks

    Full text link
    Cellular networks are constantly lagging in terms of the bandwidth needed to support the growing high data rate demands. The system needs to efficiently allocate its frequency spectrum such that the spectrum utilization can be maximized while ensuring the quality of service (QoS) level. Owing to the coexistence of different types of traffic (e.g., real-time (RT) and non-real-time (nRT)) and different types of networks (e.g., small cell and macrocell), ensuring the QoS level for different types of users becomes a challenging issue in wireless networks. Fractional frequency reuse (FFR) is an effective approach for increasing spectrum utilization and reducing interference effects in orthogonal frequency division multiple access networks. In this paper, we propose a new FFR scheme in which bandwidth allocation is based on RT/nRT traffic classification. We consider the coexistence of small cells and macrocells. After applying FFR technique in macrocells, the remaining frequency bands are efficiently allocated among the small cells overlaid by a macrocell. In our proposed scheme, total frequency-band allocations for different macrocells are decided on the basis of the traffic intensity. The transmitted power levels for different frequency bands are controlled based on the level of interference from a nearby frequency band. Frequency bands with a lower level of interference are assigned to the RT traffic to ensure a higher QoS level for the RT traffic. RT traffic calls in macrocell networks are also given a higher priority compared with nRT traffic calls to ensure the low call-blocking rate. Performance analyses show significant improvement under the proposed scheme compared with conventional FFR schemes

    Improving Resource Efficiency with Partial Resource Muting for Future Wireless Networks

    Full text link
    We propose novel resource allocation algorithms that have the objective of finding a good tradeoff between resource reuse and interference avoidance in wireless networks. To this end, we first study properties of functions that relate the resource budget available to network elements to the optimal utility and to the optimal resource efficiency obtained by solving max-min utility optimization problems. From the asymptotic behavior of these functions, we obtain a transition point that indicates whether a network is operating in an efficient noise-limited regime or in an inefficient interference-limited regime for a given resource budget. For networks operating in the inefficient regime, we propose a novel partial resource muting scheme to improve the efficiency of the resource utilization. The framework is very general. It can be applied not only to the downlink of 4G networks, but also to 5G networks equipped with flexible duplex mechanisms. Numerical results show significant performance gains of the proposed scheme compared to the solution to the max-min utility optimization problem with full frequency reuse.Comment: 8 pages, 9 figures, to appear in WiMob 201
    • …
    corecore