625 research outputs found

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Advances in Deep Learning Towards Fire Emergency Application : Novel Architectures, Techniques and Applications of Neural Networks

    Get PDF
    Paper IV is not published yet.With respect to copyright paper IV and paper VI was excluded from the dissertation.Deep Learning has been successfully used in various applications, and recently, there has been an increasing interest in applying deep learning in emergency management. However, there are still many significant challenges that limit the use of deep learning in the latter application domain. In this thesis, we address some of these challenges and propose novel deep learning methods and architectures. The challenges we address fall in these three areas of emergency management: Detection of the emergency (fire), Analysis of the situation without human intervention and finally Evacuation Planning. In this thesis, we have used computer vision tasks of image classification and semantic segmentation, as well as sound recognition, for detection and analysis. For evacuation planning, we have used deep reinforcement learning.publishedVersio

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Improving Facial Emotion Recognition with Image processing and Deep Learning

    Get PDF
    Humans often use facial expressions along with words in order to communicate effectively. There has been extensive study of how we can classify facial emotion with computer vision methodologies. These have had varying levels of success given challenges and the limitations of databases, such as static data or facial capture in non-real environments. Given this, we believe that new preprocessing techniques are required to improve the accuracy of facial detection models. In this paper, we propose a new yet simple method for facial expression recognition that enhances accuracy. We conducted our experiments on the FER-2013 dataset that contains static facial images. We utilized Unsharp Mask and Histogram equalization to emphasize texture and details of the images. We implemented Convolution Neural Networks [CNNs] to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. We also employed pre-trained models such as Resnet-50, Senet-50, VGG16, and FaceNet, and applied transfer learning to achieve an accuracy of 76.01% using an ensemble of seven models

    Smartphone-based object recognition with embedded machine learning intelligence for unmanned aerial vehicles

    Get PDF
    Existing artificial intelligence solutions typically operate in powerful platforms with high computational resources availability. However, a growing number of emerging use cases such as those based on unmanned aerial systems (UAS) require new solutions with embedded artificial intelligence on a highly mobile platform. This paper proposes an innovative UAS that explores machine learning (ML) capabilities in a smartphone‐based mobile platform for object detection and recognition applications. A new system framework tailored to this challenging use case is designed with a customized workflow specified. Furthermore, the design of the embedded ML leverages TensorFlow, a cutting‐edge open‐source ML framework. The prototype of the system integrates all the architectural components in a fully functional system, and it is suitable for real‐world operational environments such as seek and rescue use cases. Experimental results validate the design and prototyping of the system and demonstrate an overall improved performance compared with the state of the art in terms of a wide range of metrics
    • 

    corecore