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Abstract 

Existing artificial intelligence solutions typically operate in powerful platforms with high 

computational resources availability. However, a growing number of emerging use cases such as 

those based on Unmanned Aerial Systems (UAS) require new solutions with embedded artificial 

intelligence on a highly mobile platform. This paper proposes an innovative UAS that explores 

machine learning (ML) capabilities in a smartphone-based mobile platform for object detection 

and recognition applications. A new system framework tailored to this challenging use case is 

designed with a customised workflow specified. Furthermore, the design of the embedded ML 

leverages TensorFlow, a cutting-edge open source ML framework. The prototype of the system 

integrates all the architectural components in a fully functional system, and it is suitable for real-

world operational environments such as seek and rescue use cases. Experimental results validate 

the design and prototyping of the system and demonstrate an overall improved performance 

compared with the state of the art in terms of a wide range of metrics. 
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1 Introduction 

Unmanned Aerial Systems (UAS) have gained increasing global popularity in recent years in a 

wide range of use cases such as emergency response, disaster relief and humanitarian aid, health-

care, agriculture etc. Moreover, there is a growing demand for smart Unmanned Aerial Vehicles 

(UAV) to fulfil challenging, mission-critical tasks with improved performance. Artificial 

intelligence is expected to play an important role in such smart UAS with significantly enhanced 

capabilities beyond conventional systems. However, machine learning (ML) based solutions, 

especially those for real-time computation-demanding processing tasks, typically require high-

performance platforms such as servers or high-end desktop computers with capable graphics 

processing units (GPUs). This approach is clearly not suitable for UAS use cases with high mobility 

requirements. Therefore, new solutions are entailed to enable embedded ML capabilities in 

mobile platforms as an integral part of smart UAS. 

There are two main approaches to exploring the porting of machine learning intelligence to an 

UAS. The first approach is to build the intelligence directly onboard the aircraft in the UAV, whilst 

the other approach is to deploy the intelligence off-board. There are advantages and 

disadvantages in either approach. The former approach yields a more powerful aircraft with 

strengthened onboard intelligence to localise and thus accelerate the processing of the captured 

data; however, such onboard intelligence is only applicable to a limited number of UAV models 

with an onboard software development kit (SDK). In addition, this solution has higher energy 

consumption, leading to fast battery drainage if the UAV is not fuel-powered which is one of the 

main limiting factors for operations nowadays. In contrast, the latter benefits from a more 

flexible and much more widely applicable solution at the cost of requiring a ground 



   
 

  
 

programmable mobile platform. The selection of the approach largely depends on the specific 

deployment requirements taking into account the existing UAV models. 

Furthermore, to implement and deploy ML algorithms on an UAV, the selection of an enabling 

framework combining both ease of development and computational efficiency is of paramount 

importance. 

A number of existing ML frameworks allow easy deployment of ML (particularly deep learning) 

models to incorporate the needed artificial intelligence to the UAV. Among them, Tensorflow, 

Caffe, Keras, and OpenCV are becoming increasingly popular. Each of the frameworks has its own 

strengths and weaknesses, which should be considered for potential adoption to an UAV. Thus, 

a comparison to ensure an informed appropriate decision might need to be done for some 

specific applications. More importantly, once an ML framework is selected, the different 

underpinning ML algorithms should be evaluated in the target system so that the best overall 

performer can then be employed by the system. In addition, further research and development 

may be necessary to adapt the selected ML techniques to the target system or the operation 

environment, or optimise the system-level performance in such a complex system that integrates 

ML, computer vision, video/imagery communications, onboard or off-board processing for 

particular tasks and other cutting-edge technologies. 

The contribution of this paper is multifold: 

• A new integrated, practical UAS architecture is designed and prototyped, achieving off-

board ML-based object recognition embedded in a smartphone. 



   
 

  
 

• Three different ML object detection algorithms (SSD, Yolov3, Tiny-Yolo3) have been 

integrated in the UAS architecture optimised for improved performance in the UAS for 

object detection/recognition use cases. 

• Two Different ML frameworks (OpenCV and TensorFlow) has been integrated in the UAS 

architecture in order to allow a benchmarking testbed, thereby producing comparison 

performance evaluation of different neural networks in deep learning and platforms. 

• A leading-edge neural network architecture has been adapted and optimised for 

improved performance in the UAS for object detection/ recognition use cases. 

• A comprehensive benchmark testbed has been carried out considering several 

dimensions such as detection speed, model size, pre-processing time, ram consumption, 

battery usage and accuracy in object detection.   

• In addition, the paper demonstrates a methodology in selecting the right technologies 

from a large number of available machine learning platforms and algorithms. 

The rest of this paper is organised as follows. Section 2 reviews related work. Section 3 presents 

the design of the proposed ML-enabled UAS. Section 4 describes the implementation details. 

Sections 5 and 6 respectively present empirical results and a comparison analysis based on 

experiments in performance evaluation, together with a discussion of those results. Section 7 

concludes the paper.   

 



   
 

  
 

2 Related Work 

 Object Detection and Convolutional Neural Networks 

Over the last years, research and development in object detection have resorted to proposals 

based on Convolutional Neural Networks (CNNs), with other techniques based on hand-crafted 

features feeding Support Vector Machines (SVM) or other type of classifiers phasing out. CNNs 

have taken advantage over other approaches due to their effective ability to learn informative 

features from the data. These improvements lead to an enhancement of the accuracy 

performance, which is a decisive factor in use cases such as surveillance systems (Ko, 2018), cattle 

control (Kellenberger, 2017) and search and rescue operations (Bejiga, 2016). 

The use of CNN entails the creation of a complex neuronal structured. The more complex the 

structure is in terms of numbers of neurons in each layer and in terms of the number of layers, 

the more accuracy will be achieved by the algorithms, but in contrast, the more computational 

complexity is required, this in turn, has a direct effect in both processing speed and power 

consumption.  

The way that these neurons are structured is traditionally defined in a configuration file. This file 

also establishes the assignment for each layer, how the input layer must accept data and how it 

is formatted in the output layer. A weights file defining the configuration of the different 

convolutional layers usually accompanies such other configuration file.  

Weights are defined after a (time- and resource-consuming) training process. Depending on the 

convolutional layer that processes the data, different types of features are automatically 

extracted. At the first layers, simple low-level features such as dots, lines and edges are detected. 



   
 

  
 

In the following layers, more complex features are extracted resulting from the combination of 

the simpler, previous ones. 

This research deploys three CNN-based object detectors including Single Shot Detector, YOLOv3 

and Tiny-YOLOv3. These constitute state-of-the-art detectors with an acceptable trade-off 

between an accuracy and efficiency that enables their deployment on an UAV.  

Single Shot Detector (SSD) (Liu, 2016) features a feed-forward convolutional neural network that 

provides as a result a selection of bounding boxes with a confidence coefficient of the objects 

detected in an image. At the beginning of the process VGG16 (Chung, 2018) is used in the 

backbone providing a set of likely objects. Once the initial detection is performed and after going 

through the convolutional layers, a non-maximum suppression technique is applied to discard 

most bounding boxes. Experiments with SSD over the COCO Dataset (see Subsection 2.3) yielded 

41.2 mAP (mean Average Precision) of accuracy at 46 FPS (Frames Per Second) with an NVIDIA 

Titan X GPU (Redmon, YOLOv3: An Incremental Improvement, 2018).   

YOLOv3 (Redmon, YOLOv3: An Incremental Improvement, 2018) continues its previous 

implementation of YOLO9000 (Redmon, YOLO9000: Better, Faster, Stronger, 2016) based on 

bounding boxes predictions. In addition, the authors have removed the softmax function, just 

leaving independent logistic classifiers. This adjustment has led to the management of 

overlapping labels. From previous versions, a valuable improvement implemented is the ability 

to detect objects at three different scales, allowing the developer to choose the range of size of 

the objects to detect depending on the output layer that he/she selects. By adjusting the size of 

an image's strides, YOLOv3 detects large, medium or small objects correspondingly. In this paper, 



   
 

  
 

these sizes correspond to the output layers, which are enumerated as 0, 1 and 2, respectively. 

These sizes are directly connected to the anchor boxes values, which have been previously 

calculated before training the model. The sizes are given by downscaling the dimensions of the 

input accordingly to the stride. The smaller the stride, the tinier the objects that can be detected 

and, thus, the smaller the anchor boxes. In addition, as a feature extractor, YOLOv3 uses a 

modified version of Darknet named Darknet-53. YOLOv3 showed a performance of 55.3 mAP and 

a speed of 35 FPS with an NVIDIA Titan X (Redmon, YOLOv3: An Incremental Improvement, 2018) 

Tiny-YOLOv3 is a simplified configuration of YOLOv3. This simplification is based on a reduction 

of the number of hidden layers. Tiny-YOLOv3 is suitable for constrained environments where its 

low resources consumption leads to an increase in speed. Nevertheless, this reduction of 

consumption also leads to a decrease in the accuracy of the neural network which is just able to 

predict objects at two scales. Tiny-YOLOv3 has a performance of 33.1 mAP and 220 FPS in an 

NVIDIA Titan X  (Redmon, YOLOv3: An Incremental Improvement, 2018).   

The above-described object detectors are deployed, executed and evaluated over this work in 

order to obtain the best results in a constrained mobile platform for UAS use cases.  

 Machine Learning Platforms 

There are two implementation options for these CNN-based object detectors, either in native 

code or by using a specific platform. Usually, the challenging task of implementing the object 

detector in native code could lead to good performance although it could also result in laborious 

maintenance and give raise to difficulties in adaptations with other software. Therefore, the 

utilisation of enabling platforms seems a plausible option. There is a number of available 



   
 

  
 

platforms such as Keras (Francois, n.d.), Caffe (Karayev, 2014), OpenCV (Bradski, 2000) or 

TensorFlow (Martin Abadi). All of them have their advantages and counterparts. Keras for 

instance, is preferable for prototyping due to its ease of use and the fact that it can run over 

closer-to-hardware libraries such as TensorFlow. However, it can be overloading for real-time 

applications. TensorFlow is a mathematical framework that allows an efficient use of the GPU 

and is increasingly being used for deep learning developments. Caffe provides similar 

functionality to TensorFlow, and Caffe2 is well-suited to mobile deployment. However, the higher 

popularity of Tensorflow among the research community makes it a better candidate for fast 

deployment. OpenCV is a well-established computer vision library that incorporates machine 

learning algorithms for object tracking and other visualisation features. We have chosen 

TensorFlow and OpenCV due to their popularity and maturity in addition to the fact that the 

trade-off between performance and ease to deploy is positive. 

TensorFlow is an open-source platform that allows a developer to deploy algorithms with high-

level APIs. This is probably one of the key factors to select TensorFlow over other machine 

learning platforms. These APIs are written in several programming languages, making easier the 

development of artificial intelligence algorithms. Meanwhile, TensorFlow is not a mature 

platform yet although it is being consolidated over the time.  

Focusing on our use case with convolutional neural networks, TensorFlow just accepts as input 

both neural network configuration and its weights supported in different programming 

languages such as Java, Python and C++.  



   
 

  
 

OpenCV has also been considered in this work. OpenCV is a computer vision library free for 

academic and commercial use. Similar to TensorFlow, it is supported in different operating 

systems and by different programming languages. In the beginning, it was created for computer 

vision although it has also been developed through machine learning fields. As a difference 

compared with TensorFlow, this platform is more consolidated. Its strengths are based on how 

the library works close to real-time with images and videos. 

 

 COCO Dataset 

Microsoft COCO Dataset (Lin, 2014)  has a total of 2.5 million labelled instances of 91 common 

objects easily recognisable by every human. In addition, it is a very popular training and testing 

set for object recognition in order to obtain the best results possible. In (Lin, 2014), it is compared 

against other datasets such as PASCAL, which has twenty categories that coincide with some of 

COCO categories. Nevertheless, COCO has more instances per category than PASCAL. As an 

example, while PASCAL has more than 30,000 instances for the “person” category, COCO has 

more than 500,000 instances. This difference in the number of categories allows a more complete 

dataset with different features to enable a better learning process for the object recognition 

algorithm.  

The different object detection algorithms deployed in this work have been trained, tested and 

validated with the COCO dataset. The training set has 80 different objects to detect, more than 

200K images with 3 instances per image on average. The training dataset is formed by 50% of the 

total dataset and the testing and validating datasets are formed by 25% of the images each.  



   
 

  
 

 

 Comparison analysis of use cases in the literature 

AV expect to serve a wide range of use cases of considerable impact for the society such as 

autonomous 5G vehicles (Panwar, 2016) including its assistance in congestion (Wang X. a., 2019), 

and healing 5G networks (Sharma, 2018) by a correct positioning in order to increase coverage. 

This subsection analyses different use cases found in the literature for two different angles. 

Firstly, object detection for UAV use cases and secondly, neural networks for object detection in 

android mobile devices. This division of the study is motivated by the few previous studies 

specifically related to object detection in UAV linked to portable devices. 

2.4.1 UAV Analysis 

A literature review has been realised in order to create a comparison table of published results 

related to the topic that this paper addresses. Table 1 shows a comparison among various papers 

where object detection algorithms have been applied to the UAS' field. As shown in the table, a 

significant number of objects to detect contributions rely on  execution environments that are 

not portable (computers and powerful graphics cards are usually used). Also, those that decided 

to run the experiment in a portable resource constrained execution environment rely on classical 

computer vision methods and do not use CNN-based object detectors. Typically, Haar-like 

(Aguilar, 2017), (Rudol, 2018) and SVM techniques (Bejiga, 2016), (Zhou, 2016) are utilised due 

to their fast performance and easy implementation. Nevertheless, the higher accuracy of CNN-

based object detectors comes at the expense of higher computational resources compared to 

classical methods.  



   
 

  
 

Table 1: Comparison analysis of previous UAV use cases founded in the literature 

 

 

Ref 

Aspects 

Objective Algorithm Exec 

Environment 

Platform Accuracy FPS Model Size 

(Xu, 2017) Car & 

Roads 

Viola-Jones PC OpenCV 82.17% 0.94 NG 

(Aguilar, 2017) People Haar-LBP & 

HOG 

NG NG 73% NG NG 

(Kellenberger, 

2017) 

Wild 

Animals 

AlexNet & 

Proposed 

PC & GTX980 

TI 

NG 66% (F1 

score) 

72.65 NG 

(Wang L. a., 

2016) 

Traffic Optical Flow PC MATLAB 99.8% NG NN 

(Bejiga, 2016) Victims 

Avalanches 

GoogleNet & 

SVM 

PC NG 94.29% 0.9 NG 

(Zhou, 2016) Power Line Canny &Edge 

Detection 

iPad Air DJI NG “Real 

Time” 

NN 

(Rudol, 2018) Human Haar-Like PC Pentium 

III 

OpenCV NG NG NG 

(Martinez-de 

Dios, 2001) 

Fire ANFIS PC NG 98.00% NG NG 

(Yong, 2018) Human SSD NG TensorFlow 73.00% NG NG 

(Chiu, 2014) Obstacles Lucas-Kanade Embedded 

Backfin ADSP 

uClinux NG 16.6 NG 

TP Common 

Objects 

SSD/YOLOv3 

/Tiny-

YOLOv3 

Smartphone DJI+OpenCV 

DJI+TensorFlow 

41.2%/55.3% 

/33.1% mAp 

[0.05,1] [22,237]MB 

NG= Not Given; NN = Not Necessary; TP = This Paper; PC = Computer; Red = Lack of information; Green = uses CNN or portable device 

 



   
 

  
 

The most popular platform so far is OpenCV (Xu, 2017) (Aguilar, 2017) (Rudol, 2018). Accuracy is 

also specified in most of the cases although some of the algorithms are evaluated in their own 

dataset. Speed is detailed in frames per second although just two publications achieve a real-

time detection speed thanks to the help of a powerful graphics card or the low computational 

load realised by the algorithms. Finally, the model size is not given in any paper although it is an 

important fact for portable platforms such as smartphones.  

In contrast, our paper is focused on object detection from UAV images with high portability and 

high reliability. Therefore, different CNN-based detectors are implemented in different platforms 

in order to compare results. More importantly, the evaluation tests are carried out in a 

smartphone to achieve those objectives. 

 

2.4.2 Android CNN Analysis 

The analysis in Table 2 depicts a comparison among different publications that utilise neural 

networks in smartphones. Notice that there is not any single publication  about the utilisation of 

neural networks with UAV in constrained devices such as smartphones and tablets, and to the 

best of our understanding this is the first publication to focus on this execution environment.   

Table 2: Comparison analysis of previous CNN deployed in Smartphones use cases 

 

 

Ref 

Aspects 

Objectiv

e 

CNN Exec 

Environment 

Platform Trained Accuracy Speed Model Size 

(Tobias, 

2016) 

Sculpture AlexNet 

GoogleNet 

Ipad 1.3GHz Caffee ImageNe

t 

[57.4,59.3]% [289,992]ms NG 



   
 

  
 

(Li, 2017) Traffic SqueezeNet Android TensorFlow KITTI 

Vision  

76.7% NG 8MB 

(Stoimenov, 

2016) 

Faces Own CNN Android Google API Own DB “Small error” NG NG 

(Swastika, 

2018) 

Words Own CNN External server Matlab Alphabet [18,100]% NG NG 

(Idris, 2016) Gestures 3L MLP Android Matlab Own DB 95% NG NG 

TP Common 

Objects 

SSD/YOLOv

3 /Tiny-

YOLOv3 

Android OpenCV 

TensorFlow 

COCO 41.2%/55.3% 

/33.1% mAP 

[1,16.757]s [24,237]MB 

NG = Not Given; TP = This Paper; Red = Lack of information 

 

Table 2 compares publication using CNNs in smartphones. However, the architecture proposed 

by (Swastika, 2018) uses the help of an external server in order to realise the most consuming 

task, which is the execution of the CNN. Although the accuracy is well explained in every 

publication, but surprisingly  speed in terms of frames per seconds (fps) is not specified, which is 

a key factor in every constrained machine learning environment. In addition, the model size is 

just specified in (Li, 2017) as being an influential aspect in the system.  Authors in (Idris, 2016) 

and in (Stoimenov, 2016) use their own training dataset, leading to a high accuracy although it 

may not be representative enough to be validated properly. Other authors make use of new 

machine learning platforms such as Caffe and Google Vision API being used in (Tobias, 2016) and 

(Stoimenov, 2016), respectively. However, these studies either indicate something completely 

suggestive such as “a small error” or do not provide the size of the model.   

Our paper intends to offer a comprehensive benchmarking in object detection systems with 

neural networks executed in constrained and portable devices with high accuracy in UAV images. 



   
 

  
 

This will make a difference in the speed aspect although not in the accuracy in comparison to 

other publications referenced in Table 2. 

3 Design of the proposed smartphone-based object recognition in the 

UAV System 

This section is divided into two subsections. Firstly, the object detection workflow is expounded 

in order to clarify how the UAV's frames are finally detected by a smartphone and, secondly, how 

our approach for YOLOv3 is executed in TensorFlow for Android devices. 

 Workflow for object detection using mobile devices 

The object detection system presented in this paper is based on two platforms: OpenCV and 

Tensorflow. In order to obtain comparison data, both platforms are deployed in a similar scheme. 

Figure 1 shows the three elements used in our system. First of all, a UAV is able to transmit video 

at high quality such as 720p/1080p with low latency due to the transmission protocols such as 

LightBridge and OcuSync. Secondly, the controller, which is wirelessly connected to the UAV and 

wired to the Android device forwards the video stream from the UAV to the smartphone. Finally, 

the whole computational load will be executed in the Android smartphone. 



   
 

  
 

 

Figure1: System diagram of the proposed UAV system composed by UAV, controller and smartphone, where the smartphone 
deploys and executes the machine learning platform 



   
 

  
 

When a frame is sent from the UAV until it is shown on the screen, a complex process occurs. 

Figure 2 represents the whole process in order to clarify the design of our system.  

 

Figure 2: Diagram of the UAV object recognition system where three different threads on the smartphone execute the different 
object detection and tracking process.  

First of all, the three components must connect and synchronise to each other. During this 

process, the controller recognises the type of UAV and notifies the Android device. In addition, 

cryptography keys will be exchanged in order to secure the channel. This is possible since the DJI 

mobile SDK (DJI, n.d.) deployed in an Android device provides such security capabilities to 

establish a communication to the UAV. 

Currently, two threads will be initiate inside the Android device. A Detection Thread that will 

detect the objects from the frames and a Tracking Thread that will track each object. At the 



   
 

  
 

moment, the video stream starts from the UAV to the controller and it is forwarded to the 

smartphone. The video, which is encoded in H.264, is decoded using an internal process inside 

the device in order to obtain the YUV frames. These YUV frames that are stored in a First In First 

Out (FIFO) queue and shown on the device screen, while they are available to the Detection and 

Tracker threads.  

In addition to decoding the YUV frames from the UAS, the main thread also has the task of 

showing the video on the mobile device screen. While this functionality is being realised, the 

main thread receives the results from the localisation of the detected objects in addition to the 

class type and the probability coefficient.   

The Detection Thread, which is in charge of the CNN management, loads the detector model 

including the CNN configuration and the weights in memory. From this point on, a continuous 

loop obtains YUV frames from the FIFO queue in order to run the CNN to detect the objects. This 

loop is highly computationally demanding and is divided in three steps. 

• A preprocessing step that transforms each YUV frame in order to prepare it as an input to 

the detector. This step includes a conversion from YUV to a color format (RGB or BGR), a 

downscale to the proper input size for the CNN and an image normalisation.  

• Secondly, the image is loaded to the CNN, which detects, classifies and recognises the 

objects it was trained for. Depending on the algorithm, the CNN supplies different output 

formats. In addition, in some cases such as YOLOv3 and Tiny-YOLOv3 that perform 

detection at different scales, it is required to indicate the size of the object where the 



   
 

  
 

detection is performed (small-, mid- and big-size), reference henceforth as layers 2, 1 and 

0, respectively.  

• Finally, the output, usually encoded as an array, shows three basic types of data in an 

object detector: coordinates to indicate where the object is located, object class and its 

probability to be that object. Once all objects detected are filtered accordingly to a 

threshold probability, these data and the frame processed are sent to the tracker in order 

to update the values stored on it and start to follow the new objects detected.   

The Tracking Thread tracks the objects detected in the Detection Thread in each of the frames 

obtained from the FIFO queue. The purpose of this thread is to follow each object during each 

execution of the detection loop due to the low computationally-demanding task that it runs. The 

tracker takes less time than the detector and yields a better experience for the final user because 

it usually runs more frames in less time. Therefore, a fluent track of the objects over the screen 

is shown. This thread is modular, thus, different tracking algorithms may be used in this system 

with different performance.   

The tracker receives information from the detector with coordinates, object class, probability and 

the frame where the detection has been performed. When the Detector Thread is performing a 

new detection, the tracker is obtaining frames from the queue and tracking the objects with the 

information that it has stored and updating with the new coordinates. Once the detector is 

finished, new values are updated in the tracker.  

As we detail in Section 5.2, the detector and tracker processes are not in real-time, therefore, in 

order to obtain from the FIFO queue the most recently YUV frames recorded, many frames will 



   
 

  
 

be ignored during the simultaneous running of the 2 processes. In order to make this process 

clearer, Table 3 presents an example of 15 frames and the actions carried out by the parallel 

thread running. Based on different time-consuming tasks for each thread, this example counts 

each obtained frame as a unit of time instead of milliseconds. 

• One execution of the detection process lasts for three frames. During the last frame-unit 

this thread will update the tracker data. 

• One execution of the tracking process lasts for two frames. During the last frame-unit this 

thread will update its own data. This update has lower priority than the update from the 

detection process.  

• Ignoring frames is executed when the other threads are running their tasks. This is the 

lowest priority option.  

Table 3 presents this loop, which starts obtaining frame from the queue and running the object 

detector on it. At frame 4 the tracker and detector start at the same time, the tracker with the 

previous data and the detector working to obtain new data values. The tracker will update its 

values at frame five in order to start again the algorithm at frame six. A critical decision occurs at 

frame nine, when both (tracker and detection) can update the tracker database. In this situation, 

the detection values have a higher priority.  Notice how the images are always rendered to the 

final user and then the result of the detection is also rendered as soon as the first tracker finish 

its work at frame 5. Obviously there will be some framework that will render with the tracking 

information of previous framework, e.g. in frame 5, we will have in the screen rendered frame 5 

and the detection results of frame 4.  



   
 

  
 

Table 3: An example of detection and tracking loop when dealing in non-real-time scenarios  

Frame Detection Thread Tracking Thread Ignored Image Rendering Detection Rendering 

1 Detect_Frame1  NO YES NO 

2   YES YES NO 

3 Detector Finish  YES YES NO 

4 Detect_Frame4 Tracker_Frame4 NO YES NO 

5  Tracker Finish YES YES YES_Frame4 

6 Detector Finish Tracker_Frame6 NO YES YES_Frame4 

7 Detect_Frame7 Tracker Finish NO YES YES_Frame6 

8  Tracker_Frame8 NO YES YES_Frame6 

9 Detector Finish Tracker Finish YES YES YES_Frame8 

10 Detect_Frame10 Tracker_Frame10 NO YES YES_Frame8 

11  Tracker Finish YES YES YES_Frame10 

12 Detector Finish Tracker_Frame12 NO YES YES_Frame10 

13 Detect_Frame13 Tracker Finish NO YES YES_Frame12 

14  Tracker_Frame14 NO YES YES_Frame12 

15 Detector Finish Tracker Finish YES YES YES_Frame14 

 

The whole design describes a generic scenario where different tools and algorithms can be 

developed as it is explained in the following section. This paper is focused on moving the 

computational load to the Android device edge. Therefore, the implementation completely 

developed in the mobile device in order to warranty mobility of the platform.   

 



   
 

  
 

 Object detection algorithm 

This subsection focuses on our approach to implement the object detection algorithm, through 

the adaption of YOLOv3 to TensorFlow models as the selected platform for the workflow defined 

in the previous subsection. This design attempts to compete with the state-of-the-art YOLOv3 

implementation available in OpenCV framework in a similar system. Algorithm 1 highlights the 

data extraction process for each detected object through pseudocode.  

The output array that stores all the detection results is named detection kernel. Its length (see , 

line 6 and Equation 1) depends on stride (defined as space between pixels of interest that the 

filter shifts), detection layer, number of anchor detection (defined as number of detection 

attempts in a zone of interest) and feature map size. The feature map corresponds to the array 

that stores the information of every detected object for each block. The first four values 

corresponds to the bounding box (x,y,w,h), the next one to the confidence coefficient and rest 

corresponds values each class of the object of the trained dataset. 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒𝑤 =
𝑤𝑖𝑑𝑡ℎ

𝑠𝑡𝑟𝑖𝑑𝑒
 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒ℎ =
ℎ𝑒𝑖𝑔ℎ𝑡

𝑠𝑡𝑟𝑖𝑑𝑒
 

𝑓𝑒𝑎𝑡𝑀𝑎𝑝𝑆𝑖𝑧𝑒 = 𝑏𝑏𝑜𝑥 + 𝑐𝑜𝑛𝑓 + 𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠 

𝑘𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒 = 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒𝑤  × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒ℎ  × 𝑏𝑜𝑥𝑒𝑠𝑋𝐵𝑙𝑜𝑐𝑘 × 𝑓𝑒𝑎𝑡𝑀𝑎𝑝𝑆𝑖𝑧𝑒 

Equation 1: Describes the calculation of the kernel size for YOLOv3  

The detection kernel iteration to obtain the result of the detection data should be realised by 

processing the feature maps over each block and over the maximum boxes per block. For this 



   
 

  
 

reason, an offset (line 11).

1 pixels ← normalized bitmap 1 
2 feed_Inference (inLayer, pixels, 416, 416) 2 
3 run_Inference (outLayer) 3 
4 blocksizeW ← bitmap.getWidth() / stride 4 
5 blocksizeH ← bitmap.getHeight() / stride 5 
6 output ← new foat[DETECTION_KERNEL_SIZE] 6 
7 fetch_Inference (outLayer, output) 7 
8 for y=0; y<blocksizeH; y++ do 8 
9 for x=0; x<blocksizeW; x++ do 9 
10  for b=0; b<BOXES PER BLOCK; b++ do 10 
11   offset ← FEATURE_MAP_SIZE * var 11 
12   xPos ← x + sigm(output[offset + 0]) * stride 12 
13   yPos ← y + sigm(output[offset + 1]) * stride 13 
14   w ← output[offset + 2] * ANCHORS[2b + 0] 14 
15   h ← output[offset + 3] * ANCHORS[2b + 1] 15 
16   conf ← sigmoid(output[offset+4]) 16 
17   rect ← createRectangle(xPos,yPos,w,h) 17 
18   class ← mostProbabilityClass() 18 
19   detections ← addDetection(class, rect, conf) 19 
20 return detections 20  

Algorithm 1: Defines the process to obtain the detected objects from the kernel output of YOLOv3 using the kernel size described 
in Equation 1. 

4 Implementation 

The described system is a generic enough design able to run on TensorFlow and OpenCV 

platforms, which accept YUV frames as inputs and obtain data formatted in a similar way as 

outputs. In addition, this system is widely applicable to different types of CNN-based object 

detectors such as SSD, YOLOv3 and Tiny-YOLOv3. Additionally, due to its generic implementation, 

different types of trackers can be used for a better user experience.  

These three algorithms are already implemented in OpenCV, therefore, we will deploy them in 

our scenario. Nevertheless, TensorFlow for Android just implements SSD. In this section, we 

present our approach for the implementation of YOLOv3 and Tiny-YOLOv3 for TensorFlow in 



   
 

  
 

order to explain how this project has achieved the results produced in Section 5.2 and be able to 

compare both platforms with the same algorithms. The deployment of YOLOv3 is coded for 

TensorFlow on Android in order to be executed on mobile platforms. 

 Generation of Protobuf models 

In order to load YOLOv3 models in the TensorFlow platform using the proper format (protobuf), 

we have implemented a new strategy. The protobuf format joins the network configuration file 

and the weight file into one protobuf (.pb) file. For YOLOv2, an existing project supported by 

Google, called DarkFlow (Trieu, n.d.) is able to transform both YOLOv2 files into a TensorFlow 

YOLOv2.pb file.  

Nevertheless, DarkFlow is currently obsolete and does not support YOLO v3 conversion into a 

protobuf file. For this reason, this work has managed to achieve the same objective through a 

different way. For this purpose, we resorted to Keras due to its capability to work with 

TensorFlow 1. 

 

Figure 3:  How to generate TensorFlow models from YOLO configuration and weights file to protobuf format 

 
1 This was part of the preparation for implementation. Keras was not used in the final implementation. 



   
 

  
 

Whilst YOLOv2 just needs one step to obtain its protobuf model, YOLO v3 needs two steps as it 

is represented in Figure 3. First of all, the network configuration file and the weight file from 

YOLOv3 is processed by Keras, which will generate an intermediate file with a h5 extension. In 

this process, Keras creates a help file, which defines the neural network in JSON format. After h5 

file is created, a keras\to\tensorflow (Abdi, n.d.)  script is applied where the input and outputs 

layers are indicated.  

In this last step, the number of output layers indicated depends on the type of YOLO networks. 

In the YOLOv3 case, three output layers need to be defined; however, for Tiny-YOLOv3, just two 

should be indicated. 

 Integration of Tensorflow to Android 

In order to integrate TensorFlow platform to Android, we have explored a library provided by 

Tensorflow named Android Inference Library, which is an interface that permits this integration. 

This library is prepared to be built by Bazel (Group, n.d.), which is a speed and scalable tool to 

compile projects. Although TensorFlow recommends this technology to build its library, DJI SDK 

needs directives that Bazel does not support. For this reason, cmake is utilized as a substitute in 

order to build TensorFlow and DJI SDK in the same application. This built also includes the tracker 

compilation in C++.  

For our algorithm, we have employed four main methods provided by  TensorFlow Inference 

Interface in order to run YOLOv3: 

• TensorFlowInferenceInterface constructor is dedicated to load the protobuf model into 

memory. This method must be called before any treatment with the CNN.  



   
 

  
 

• Feed method ( line 2) copies the input data into TensorFlow before running it. Some 

parameters as the input name, the input size of the frames and dimensions are necessary 

to be specified.  

• In order to run the inference call, run method ( line 3}) performs this action whilst it is 

necessary to specify the output name, in YOLOv3 is the number of output layer.  

• Fetch method ( line 7) copies the output Tensor into a output array which will be post-

processed in order to obtain the detection results.  

 Definition of YOLOv3 anchor boxes 

In order to implement YOLOv3 and Tiny-YOLOv3, we have utilised the anchor boxes concept, 

which predefines some initial sizes (width, height) for the coordinates of the objects detected. 

The anchor will be resized to the closest size of the detected object obtained from the Tensor 

output of the neural network. 

Specifically, we have defined three anchor boxes per output layer with a format “width, height”; 

therefore, for Tiny-YOLOv3 six anchor boxes are defined and for YOLOv3 nine. In lines 14 and 15 

of  the anchors are extracted and calculated in order to obtain the width and height of the 

detected object. These anchor boxes were calculated after clustering studies on ground truth 

labels on COCO dataset as YOLOv3 authors recommend. 

5 Performance Evaluation 

This section presents the empirical performance evaluation of the proposed approach based on 

TensorFlow and compared with the alternative approach based on OpenCV. For brevity, we use 

“TensorFlow and OpenCV” to represent the two approaches. All the results are based on realistic 



   
 

  
 

tests applied to both approaches. Over the section, a description of the deployment of the 

scenario and the benchmarking testbed is detailed. In addition, several tests highlight different 

features of this design, leading to a comprehensive comparison analysis.   

 Deployment of the testbed 

5.1.1 Prototype equipment 

The UAV is the main entity of the scenario and it has the main responsibility of sending the video 

stream to the controller. In this paper a DJI-Inspire v1 (SZ DJI Technology Co., Ltd., see Figure 4) 

is used. It supports a ZENMUSE X3 camera, which has a wide angle lens and can record 4K 

(@25fps) and 1920x1080 (@60fps) videos and take 12MP photographs.  

The video recorded from the UAV is transmitted in real-time to the controller by DJI Lightbrige 

technology, which is able to transfer the video stream up to 5 kilometres far away. 

 

Figure 4: Real testbed Scenario: UAV, controller and smartphone 

The Controller is the second entity in the scenario and it is responsible for establishing a direct 

communication to the UAV. Every command relevant to the UAV flight and also the video 



   
 

  
 

transmission are sent over a dedicated radio channel (operating frequency: 5.725-5.825 GHz and 

2.400-2.483 GHz). It also has a USB port that links the controller to the mobile device.   

The third entity is the smartphone which is connected to the controller by wire. It runs the Mobile 

SDK provided by DJI and it allows the user to interact with the UAV and visualise the video stream. 

The mobile device employed is a Samsung Galaxy S7 Edge (SM-G935F) running Android 7.0, 

equipped with a Samsung Exynos 8 Octa 8890. (2.3Ghz Quad-Core and 1.6Ghz Quad-Core), 4G 

RAM and a battery capacity of 3600mAh. The final decision has been to deploy the system in the 

smartphone instead of the on-board UAV. The main reason is that our system is power-hungry 

since it needs to continuously execute the CNN and it would significantly affect the performance 

of the on-board battery of the UAV which are, a valuable resource of the system. It is worth 

mentioning that a fully charge battery only last for 15 minutes of operation without any system 

running on top. It can lead to a time frame that is out of the acceptance boundaries for 

operations. 

Furthermore, we have analysed other potential host platforms. Firstly, the Nvidia Jetson AGX 

Xavier performs better than the smartphone, and a Google TPU based approach is also promising. 

However, they both require a complete power supply, which compromises the portability of the 

solution, and they do not come with a screen, which is mandatory to perform the flying 

operations of the UAV. Secondly, Raspberry Pi 4 comes with a “Broadcom VideoCore V” 

elemental GPU without support for GPU processing acceleration required in our system. Thirdly, 

the Neural Compute Stick is an interesting recent add-on; however, the main constraint 

associated with it is that the USB stick still requires a host platform to be connected. And thus, it 



   
 

  
 

will require the smartphone anyway.  Therefore, we have concluded to deploy the system on a 

smartphone platform. 

5.1.2 Machine learning platforms 

Two Machine Learning Platforms have been deployed inside the smartphone: TensorFlow and 

OpenCV. The generic system designed and implemented in Section 3 allows the integration of 

both platforms without restructuring the scheme. 

TensorFlow and OpenCV provide an Android SDK able to implement object detection algorithms 

among others. This SDK is written with Android JNI allowing a better performance in the device. 

In addition, different trackers are supported by each of them. In this scenario, OpenCV library is 

version 4.0.0 which includes YOLOv3 and TensorFlow is deployed (git tag v1.12.0-rc0). 

 

Figure 5:  Structure of the technologies deployed in the smartphone for the proposed system 



   
 

  
 

5.1.3 Object detection algorithms 

The scenario contemplates two different up-to-day algorithms and a simplification of one of 

them. SSD, YOLOv3 and Tiny-YOLOv3 will be executed by both platforms in a similar way due to 

the generic system implemented.  

YOLOv3 and Tiny-YOLOv3 can run at different output layers according to the size of the object 

that they want to detect (prediction across scales). While YOLOv3 can run at three different layers 

and Tiny-YOLOv3 at two different ones, SSD just can run at one final layer.  

Figure 5 shows an architectural overview of every technology deployed in the smartphone. 

Android OS runs the DJI Mobile SDK in order to communicate with the UAV and the Machine 

Learning Platforms: TensorFlow and OpenCV. Each of them runs in a lower layer three detection 

algorithms: YOLOv3, Tiny-YOLOv3 and SSD. Finally, depending on the object detection algorithm, 

different output layers could be activated.   

 Experiments and Results 

Several tests have been run in order to analyse different features. Evaluations for accuracy, speed 

(frames per second), RAM, battery consumption, and temperature are explained in the following 

subsections. Most of those experiments are performed on both machine learning platforms and 

on each object detection algorithm available in such platforms and on each output layer available 

in such algorithm, ending up in more than 60 different datasets. 



   
 

  
 

5.2.1 Tracker 

This scenario considers the possibility of neural networks not achieving real-time object detection 

in a smartphone, therefore, external help is needed such as a tracker algorithm. For this reason. 

a tracker per machine learning platform is proposed.  

For both Machine Learning libraries, optical flow trackers have been employed. Each library 

implements, using different techniques, such algorithms. For instance, OpenCV library 

implements their trackers in JNI interface and TensorFlow compiles their C implementation. 

 

Figure 6: Performance comparison on the tracking process of our system when ranging different number of objects to be 

followed using both OpenCV and TensorFlow platforms 

In order to obtain results from the trackers for each platform, a speed test is performed in this 

section. We tracked 1--4 objects over 300 frames, extracting performance results for both 

platforms. As shown in Figure 6, TensorFlow obtains the same times for one, two, three or four 

objects per frame, however, the performance of OpenCV is decreased, almost proportionally to 



   
 

  
 

the number of objects tracked. This test shows that TensorFlow is able to scale properly when 

the number of objects to track increases per frame.  

Nevertheless, in order to realise a real-time tracking, it is necessary to perform these algorithms 

under 41.6 milliseconds (with a video stream of 24 fps). TensorFlow is not able to achieve this 

performance although it just ignores six frames per second being the rest of them correctly 

tracked.  

 

5.2.2 Models 

Three different models has been tested in this scenario. Each one presents variations in 

comparison to others and within machine learning platforms. As previously defined in section 2, 

these models are composed by a configuration file which represents the neural network 

structure and the weights file which stores previously trained values. 

 

Table 4: Performance comparison on the detection process of our system when ranging the size of the CNN configuration using 
both OpenCV and TensorFlow platforms 

 

CNN 

Size Loading Time 

OpenCV TensorFlow OpenCV TensorFlow 

SSD 23.2MB 29.1MB 404.2ms 1626.2ms 

Tiny-YOLOv3 33.8MB 33.8MB 156.6ms 840.4ms 

YOLOv3 237.08MB 236.66MB 1474.8ms 6091.6ms 

 



   
 

  
 

Two tests have been realised in order to measure the size of the models loaded in memory and 

the time taken to complete the task (Table 4). According to the size, all YOLO models have an 

equal size in both platforms, although, for SSD, TensorFlow uses its own API leading to 6MB larger 

size.  

On the other hand, as the size of the model increases, the time taken for OpenCV to load it, also 

increases. Nevertheless, TensorFlow suffers deficiencies in this factor, for instance, the time 

consumed loading SSD model, which has the lowest size, is five times slower than loading it with 

OpenCV.   

5.2.3 Speed 

Nowadays, mobile devices are not able to perform a highly demanding computational task at 

great speed. They do not possess enough capability power to run complete CNN-based object 

detectors at real time. This subsection evaluates the time that takes each algorithm to process 

each frame. In addition, TensorFlow and OpenCV are compared in order to show which one leads 

to a faster execution. 

These tests are executed in a real scenario where the video is received from the UAV and 

processed by the smartphone. The times are measured from the instant the frame enters the 

input layers of the CNN until it receives the output from it. Each frame has been scaled down to 

a resolution of 416x416 pixels, which is an appropriate size for detection. In order to obtain 

reliable data, we examined a thousand frames for each output layer produced by the algorithms 

run on each platform. The data is presented as graphs, which illustrate the cumulative average 

of each frame in milliseconds over the thousand frames tested. 



   
 

  
 

 

Figure 7: SSD – Accumulative average in milliseconds per frame 

Figure 7 shows the performance obtained from the execution of SSD for Tensorflow and for 

OpenCV. As it can be observed, TensorFlow consumes more than two seconds in the first frames 

due to a need to access primary memory. Afterwards, it reduces the processing time to one 

second per frame. On the other hand, OpenCV increases the processing time as the number of 

frames increments.  

 

Figure 8: Tiny-YOLOv3 – Accumulative average in milliseconds per frame 



   
 

  
 

In order to evaluate the performance of Tiny-YOLOv3, both output layers have been tested per 

machine learning platform, and results are depicted in Figure 8. In this analysis, all cases need 

more time at the first frames to access primary memory. For layer 0, TensorFlow works slower 

than OpenCV, although in layer 1 TensorFlow processes each frame faster. 

 

Figure 9: YOLOv3 – Accumulative average in milliseconds per frame 

Figure 9 presents six different tests for YOLOv3, where the three layers are evaluated for both 

platforms. Due to the considerable size and complexity of the model, the speed decreases 

significantly compared to SSD and Tiny-YOLO. Overall, TensorFlow optimises the processing for 

all layers obtaining better results than OpenCV. 

 

Table 5:  Average of milliseconds per frame for different  approaches and CNNs 

 

Layer/ML 

SSD Tiny-YOLOv3 YOLOv3 

0 0 1 0 1 2 

TF 1000.4 1219.2 1338.8 12527.9 14042.4 12939.6 



   
 

  
 

OCV 1446.3 1115.6 1363.1 13111.8 15429.7 16757.3 

 

Table 5 summarises the average time that each frame takes to be processed for each algorithm 

and each platform. Overall, TensorFlow (TF) is faster in five of out of six cases, surpassed only by 

OpenCV (OCV) in layer 0 of Tiny-YOLO.   

5.2.4 Battery Consumption 

The different processes being run on the system could lead to high battery consumption. Running 

neural networks, which is a demanding computational task, has a direct impact on the mobile 

device battery.  

As explained before, the UAV's controller is connected by wire to the smartphone, therefore, it 

supplies energy to the mobile device leading to a slower drain of the battery. This charge allows 

a better performance of the test, with an input voltage of 5V. Although with the battery supply, 

the consumption is heavy and the battery drains faster than it is charged. 



   
 

  
 

 

Figure 10:  SSD – Battery consumption over an hour of time 

In this subsection, the battery is evaluated and compared between platforms for each algorithm. 

Over these tests, the smartphone battery (3582 mAh) is evaluated during an hour, receiving video 

streams from the UAV and applying the object detection algorithms. The figures represent the 

battery percentage (Y-axis) over the time in seconds (X-axis). All the experiments carried out in 

this subsection are executed for a similar time duration, 3600 seconds which is a decisive factor 

for battery consumption. 



   
 

  
 

  

Figure 11: Tiny-YOLOv3 – Battery consumption over an hour of time 

 

The battery consumption presented in Figure 10 shows that TensorFlow and OpenCV perform 

similarly due to both of them still having an 85% remaining battery after the test.  

 

For the Tiny-YOLOv3 (Figure 11) case there is also a draw in its layer 0 between OpenCV and 

TensorFlow. There is a difference in the second layer of 2 percent, in this case, OpenCV is more 

efficient with an 86% of the battery remaining. 



   
 

  
 

 

Figure 12: YOLOv3 – Battery consumption over an hour of time 

Figure 12 shows YOLOv3 battery. There are two differences, for layer 0, OpenCV performs a 

higher drain losing one percent of battery, however, for layer 1 TensorFlow shows less efficient 

and completes the task with an 84% of the total battery.   

In summary, both platforms have similar battery consumption with the three algorithms, in all 

cases being around 85%. In addition, not all the drainage is related to the CNN execution, it is 

also related to the screen usage in order to show the video and the streaming reception from the 

UAV. 

5.2.5 Temperature 

A high battery consumption in addition of a CNN execution leads to a temperature increase in 

the mobile device. This increase could affect the performance of the smartphone, therefore, it is 

a factor that needs to be evaluated. The Samsung S7 edge utilised in this experiment has a 

constant temperature in normal environments of around 30ºC. However, the smartphone should 



   
 

  
 

not be damaged from overheating, which is achievable through shutting down when it reaches a 

peak of 80-90ºC.   

The following figures present the temperature increment over an hour of running the object 

detection algorithms. In the Y-axis degrees temperature are presented and the X-axis shows time 

in seconds over and hour. Figures for each object detection algorithm performing in both 

platforms are presented. 

 

Figure 13: YOLOv3 – Temperature performance over an hour of time 

The data collected from the test of the SSD algorithm is presented in Figure 13, which shows how 

the temperature of the device increases until it stabilises at 39ºC. At the end, both platforms 

achieve the same temperature although TensorFlow has a sharper increase in the temperature 

reaching 39ºC  758 seconds earlier than OpenCV.  



   
 

  
 

 

Figure 14: Tiny-YOLOv3 – Temperature performance over an hour of time 

In Figure 14 a difference in the final temperature exists between both platforms. While 

TensorFlow obtains 40ºC in both Tiny-YOLOv3 layers, OpenCV reduces the value to 39ºC being 

more efficient in this case. 

 

Figure 15: YOLOv3 - Temperature performance over an hour of time 



   
 

  
 

Figure 15 shows the values obtained from the test applied to YOLOv3. On average, the final 

temperatures are higher than for SSD and Tiny-YOLOv3 due to the larger size of the model. For 

the three layers, TensorFlow is more efficient with 41ºC, 40ºC and 40ºC (respectively) against 

OpenCV which reaches a peak of 42ºC in layers 0 and 2, and 41 ºC in layer 1. 

5.2.6 Accuracy 

Accuracy is a key factor in object detection, particularly, when dealing with UAV-acquired images 

where the objects are small and the UAV flies at a high altitude.  

The three models have been trained equally to evaluate performance in terms of accuracy. This 

evaluation (Redmon, YOLOv3: An Incremental Improvement, 2018),measured with the COCO 

Dataset (Lin, 2014), provides the accuracy value as mAP, which stands for mean Average 

Precision. The Average Precision is calculated as the average of maximum Precision at different 

Recall levels from the matches of the ground truth (Intersection over Union above 0.5). The 

Precision measures the accuracy of the CNN predictions and the Recall the proportion of positives 

detected. mAP is usually employed as a standard measure for comparing algorithms. 

After the SSD, YOLOv3 and Tiny-YOLOv3 models were trained, the test dataset, which is detailed 

in section 2.3, is applied in order to get the mAP. Notice that this test make sure of the dataset 

rather than the video streamed directly from the UAV to allow fair comparison under equal 

conditions. SSD provided 41.2 mAP, Tiny-YOLOv3, 33.1 mAP and YOLOv3, 55.3 mAP. Being 

YOLOv3 the most accurate one and Tiny-YOLOv3 the lowest one. Accuracy achieved by the 

models is independent of the machine learning platforms, it just depends on the algorithm, in 



   
 

  
 

fact, no meaningful differences between TensorFlow and OpenCV has been obtained, validating 

such assumption.  

 

Figure 16a: SSD – Accuracy performance for different CNNs in a real environment 

 

Figure 16b: Tiny-YOLOv3 - Accuracy performance for different CNNs in a real environment 



   
 

  
 

 

Figure 16c: YOLOv3 - Accuracy performance for different CNNs in a real environment 

In order to present a visual example with UAV footage, Figure 16a, Figure 16b, Figure 16c show 

images where the three algorithms have been applied. The sample picture was taken with the 

UAV described in Section 5.1, therefore, it represents a real use case. In the image, which was 

taken from an altitude of 20 meters, cattle (colloquially cows) appears resting at different depths. 

Consequently, they are represented by different number of pixels. 

Figure 16a shows the results of executing the SSD algorithm. It just wrongly detects a sheep with 

0.285 of confidence while only cows appear in the image. In this example, SSD wrongly detects a 

tiny sheep without a high confidence. 

Tiny-YOLOv3 results are shown in Figure 16b. It correctly detects the bigger cow in the picture 

with a confidence of 0.312 obtaining a better performance than SSD in this use case.  

Finally, Figure 16c displays YOLOv3 results. As it can been observed, YOLOv3 is able to detect ten 

objects. Four of them are detected wrongly as sheep and the other six are correctly detected as 

cows. While the sheep gives an average of 0.756 of confidence, the cows are 0.567. Both values 

can be considered as high confidence values due to the small size of the animals. 



   
 

  
 

In this use case, both YOLO algorithms have been executed in their last output layer which is able 

to detect smaller objects. This is one of the main characteristics that tips the scale in favour of 

YOLO algorithms. Although not only cows but also sheep are detected, both animals are similar 

even for human sight at that high altitude, therefore, it does not signify a great fail for the object 

detection algorithms. It is also worth nothing that the objects to search for can be limited in the 

training dataset. The COCO datasets has a wide variety of objects. For particular applications, 

such as human search for instance, a specific annotation in the dataset could lead to less errors 

and an accuracy improvement. 

5.2.7 RAM Usage 

In previous subsections, the size of each model has been studied. This could lead to a hypothesis 

in which “the bigger the model, the higher the memory consumption”. In order to clarify this 

assumption, this test evaluates the amount of RAM used to run these algorithms in each 

platform. The mobile device has 4GB of memory available for applications, therefore, this is the 

maximum possible to run our scenario. 



   
 

  
 

 

Figure 17: Average and maximum RAM used over an hour of time 

Figure 17 represents the tests carried out. Over these tests, the average and the maximum RAM 

used have been evaluated. Each column represents a value of memory for an algorithm and each 

group of columns the machine learning platform. The Y-axis represents MB of memory used.  

On the one hand, TensorFlow shows a stabilised average of the memory used over the different 

algorithms. Nevertheless, OpenCV has two peaks when YOLOv3 in layers 1 and 2 are executed.  

On the other hand, the maximum RAM used for both platforms are clearly increased when is 

used in YOLOv3 due to the big size of the model. In comparison, TensorFlow reserves less memory 

than OpenCV making it a better choice in this category.  

After the experimentation, the data obtained can confirm that the hypothesis of “the bigger the 

model, the higher the RAM consumption” is valid for OpenCV. TensorFlow shows a similar trend 

in the maximum RAM used, although it scales better the memory used. 



   
 

  
 

5.2.8 Preprocessing 

Due to the fact that preparation of the frames as a correct input for the CNNs is a key factor, a 

time test has been performed to evaluate how much time-consuming this task is.  

In OpenCV, the YUV frame received is transformed to a library-specific matrix (Mat object). 

Afterwards, the frame colour will be changed to RGB and the frame will be prepared to enter into 

the CNN, where it will be resized and set the input.  

On the other hand, TensorFlow encodes the YUV frame into ARGB directly in Android without 

utilising an object class as OpenCV. Afterwards, it transforms the ARGB frame to an Android 

Bitmap object, and finally, it prepares the input data as a tensor for the CNN.  

Tensorflow consumes more time in the preprocessing step, around 189.54 ms. A bit more than 

128 ms of difference between platforms demonstrates that OpenCV shows a better performance 

due to the use of the primary objects implemented in its library such as Mat. This optimisation is 

a strength for OpenCV, whose main field of use is computer vision, contrary to the more general 

use of TensorFlow which is not developed exclusively for computer vision applications. 

6 Comparison Analysis 

The previous sections have described how the system has been deployed in OpenCV and 

TensorFlow. A comparison analytic table is presented in this section to summarise the previous 

evaluation in order to identify the most appropriate machine learning platform for UAS use cases.  

Table 6: Overall performance comparison of TensorFlow- VS OpenCV-based approaches 

CNN SSD Tiny-YOLOv3 YOLOv3 



   
 

  
 

Layer 0 0 1 0 1 2 

Tracker TensorFlow 

Model Size OpenCV Draw TensorFlow 

Load Model OpenCV OpenCV OpenCV 

FPS TensorFlow OpenCV TensorFlow TensorFlow TensorFlow TensorFlow 

Battery Draw Draw OpenCV TensorFlow OpenCV Draw 

Temperature Draw OpenCV OpenCV TensorFlow TensorFlow TensorFlow 

Accuracy - - - - - - 

RAM Average Draw TensorFlow Draw TensorFlow TensorFlow TensorFlow 

RAM Maximum OpenCV TensorFlow TensorFlow TensorFlow TensorFlow TensorFlow 

Preprocessing OpenCV 

 

This summary is depicted in Table 6. In the table, we have highlighted in yellow when OpenCV is 

superior to TensorFlow, in red when TensorFlow is superior to OpenCV and in green when the 

results are similar. For instance, OpenCV wins over TensorFlow when the preprocessing of the 

image is being realised. This process is continually performed every time before the neural 

network is executed. Nevertheless, TensorFlow shows a better execution when tracking is 

currently being executed. Because of tracking process is executed more times per second than 

the preprocessing process, it is preferable to choose TensorFlow platform for both features.   

OpenCV scores better results against TensorFlow related to the models' sizes and the time taken 

to load them, although this feature is realised just once at the starting of the Android application.  



   
 

  
 

According to the RAM usage and the temperature data, TensorFlow performs better results when 

the CNN is running than OpenCV. In battery results OpenCV is just a little bit better when some 

layers of YOLOv3 are being executed, nonetheless, this small difference is negligible.  

Finally, the most important factor for resource-constrained mobile devices is the speed 

performed when the neural networks are being executed. In this case, TensorFlow is the clear 

winner since it achieves higher frames per second than OpenCV. In addition, our implementation 

of YOLOv3 in TensorFlow in more efficient than the OpenCV implementation. 

7 Conclusion 

This paper has proposed and prototyped a new, highly portable and capable UAS for object detection 

and recognition use cases. The solution is empowered by machine learning run over resource-

constrained mobile devices such as smartphones. The workflow has been customised to be suitable for 

such a challenging operational environment, meanwhile it can be applicable to multiple machine 

learning frameworks such as TensorFlow and OpenCV. The proposed system supports a range of 

different CNN algorithms including SSD, YOLOv3 and Tiny-YOLOv3. In particular, the design has enabled 

a new YOLOv3-based object detection algorithm to run in TensorFlow for high detection accuracy.  

 

The proposed design with TensorFlow as the ML platform has been prototyped and empirically 

compared with an alternative state-of-the-art solution based on OpenCV. Overall, the proposed 

TensorFlow based approach outperforms the OpenCV alternative in common instructions for ML despite 

the fact that OpenCV allows better optimisation of the images administration as its target is computer 

vision. Even with the strengths of each platform, real-time object detection needs to be enhanced as a 

consequence of the modest resources that the smartphone owns. 



   
 

  
 

 

Future work will be focused on exploring techniques to further reduce the computational load 

on mobile devices. New developments such as hardware implementations will be explored to 

investigate the increase of the performance of the system. Novel structure of the convolutional 

neural network focused on the reduction of the inference time required to detect small objects 

will be explored. The main idea is to explore further techniques to real a point where the 

tracking process is not required since the detection could be achieved in real-time. 
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