2,028 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Randomized Dynamic Mode Decomposition

    Full text link
    This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank matrix approximations at a fraction of the cost of deterministic algorithms, easing the computational challenges arising in the area of `big data'. The idea is to derive a small matrix from the high-dimensional data, which is then used to efficiently compute the dynamic modes and eigenvalues. The algorithm is presented in a modular probabilistic framework, and the approximation quality can be controlled via oversampling and power iterations. The effectiveness of the resulting randomized DMD algorithm is demonstrated on several benchmark examples of increasing complexity, providing an accurate and efficient approach to extract spatiotemporal coherent structures from big data in a framework that scales with the intrinsic rank of the data, rather than the ambient measurement dimension. For this work we assume that the dynamics of the problem under consideration is evolving on a low-dimensional subspace that is well characterized by a fast decaying singular value spectrum

    Revisiting Wedge Sampling for Budgeted Maximum Inner Product Search

    Full text link
    Top-k maximum inner product search (MIPS) is a central task in many machine learning applications. This paper extends top-k MIPS with a budgeted setting, that asks for the best approximate top-k MIPS given a limit of B computational operations. We investigate recent advanced sampling algorithms, including wedge and diamond sampling to solve it. Though the design of these sampling schemes naturally supports budgeted top-k MIPS, they suffer from the linear cost from scanning all data points to retrieve top-k results and the performance degradation for handling negative inputs. This paper makes two main contributions. First, we show that diamond sampling is essentially a combination between wedge sampling and basic sampling for top-k MIPS. Our theoretical analysis and empirical evaluation show that wedge is competitive (often superior) to diamond on approximating top-k MIPS regarding both efficiency and accuracy. Second, we propose a series of algorithmic engineering techniques to deploy wedge sampling on budgeted top-k MIPS. Our novel deterministic wedge-based algorithm runs significantly faster than the state-of-the-art methods for budgeted and exact top-k MIPS while maintaining the top-5 precision at least 80% on standard recommender system data sets.Comment: ECML-PKDD 202
    corecore