26,121 research outputs found

    Remembering Forward: Neural Correlates of Memory and Prediction in Human Motor Adaptation

    Get PDF
    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions – including prefrontal, parietal and hippocampal cortices – exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancelation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures

    A wave emulator for ocean wave energy, a Froude-scaled dry power take-off test setup

    Get PDF
    A dry laboratory environment has been developed to test Power Take-O_ (PTO) systems for Wave Energy Converters. The costs accompanied by testing a wave energy converter and its PTO at sea are high due to the di_cult accessibility of (remote) test locations. Next to easy accessibility, the lab setup provides controllable waves at a relatively lower cost. The setup enables extensive analysis of the dynamics of a PTO during its mechanical towards electrical energy conversion. The scaled setup is designed such that it resembles as close as possible the real system. Froudes similarity law provides easy transformation. The oater and waves are represented by a Wave Emulator, the motion of which is determined by a time series of the wave exciting forces supplemented with the actual hydrodynamic reaction forces due to the motions of the oater. A real-time calculation method is introduced, accounting for the actual PTO actions. Furthermore, the inertia of the oater is represented in the emulators rotary inertia, and a compensation method is proposed enabling an identical normalized PTO load curve as at full scale. Comparison between experimental and simulation results have been performed and good correlation between the movement of setup and simulations has been found

    Detection of motional ground state population of a trapped ion using delayed pulses

    Get PDF
    Efficient preparation and detection of the motional state of trapped ions is important in many experiments ranging from quantum computation to precision spectroscopy. We investigate the stimulated Raman adiabatic passage (STIRAP) technique for the manipulation of motional states in a trapped ion system. The presented technique uses a Raman coupling between two hyperfine ground states in 25^{25}Mg+^+, implemented with delayed pulses, which removes a single phonon independent of the initial motional state. We show that for a thermal state the STIRAP population transfer is more efficient than a stimulated Raman Rabi pulse on a motional sideband. In contrast to previous implementations, a large detuning of more than 200 times the natural linewidth of the transition is used. This approach renders STIRAP suitable for atoms in which resonant laser fields would populate fluorescing excited states and thus impede the STIRAP process. We use the technique to measure the wavefunction overlap of excited motional states with the motional ground state. This is an important application for photon recoil spectroscopy and other force sensing applications that utilize the high sensitivity of the motional state of trapped ions to external fields. Furthermore, a determination of the ground state population enables a simple measurement of the ion's temperature.Comment: 17 pages, 7 figure

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke

    Get PDF
    It is well documented that neurological deficits after stroke can disrupt motor control processes that affect the smoothness of reaching movements. The smoothness of hand trajectories during multi-joint reaching depends on shoulder and elbow joint angular velocities and their successive derivatives as well as on the instantaneous arm configuration and its rate of change. Right-handed survivors of unilateral hemiparetic stroke and neurologically-intact control participants held the handle of a two-joint robot and made horizontal planar reaching movements. We decomposed endpoint jerk into components related to shoulder and elbow joint angular velocity, acceleration, and jerk. We observed an abnormal decomposition pattern in the most severely impaired stroke survivors consistent with deficits of inter-joint coordination. We then used numerical simulations of reaching movements to test whether the specific pattern of inter-joint coordination deficits observed experimentally could be explained by either a general increase in motor noise related to weakness or by an impaired ability to compensate for multi-joint interaction torque. Simulation results suggest that observed deficits in movement smoothness after stroke more likely reflect an impaired ability to compensate for multi-joint interaction torques rather than the mere presence of elevated motor noise
    • …
    corecore