1,016 research outputs found

    Morphological Disambiguation by Voting Constraints

    Full text link
    We present a constraint-based morphological disambiguation system in which individual constraints vote on matching morphological parses, and disambiguation of all the tokens in a sentence is performed at the end by selecting parses that receive the highest votes. This constraint application paradigm makes the outcome of the disambiguation independent of the rule sequence, and hence relieves the rule developer from worrying about potentially conflicting rule sequencing. Our results for disambiguating Turkish indicate that using about 500 constraint rules and some additional simple statistics, we can attain a recall of 95-96% and a precision of 94-95% with about 1.01 parses per token. Our system is implemented in Prolog and we are currently investigating an efficient implementation based on finite state transducers.Comment: 8 pages, Latex source. To appear in Proceedings of ACL/EACL'97 Compressed postscript also available as ftp://ftp.cs.bilkent.edu.tr/pub/ko/acl97.ps.

    Using Multiple Sources of Information for Constraint-Based Morphological Disambiguation

    Get PDF
    This thesis presents a constraint-based morphological disambiguation approach that is applicable to languages with complex morphology--specifically agglutinative languages with productive inflectional and derivational morphological phenomena. For morphologically complex languages like Turkish, automatic morphological disambiguation involves selecting for each token morphological parse(s), with the right set of inflectional and derivational markers. Our system combines corpus independent hand-crafted constraint rules, constraint rules that are learned via unsupervised learning from a training corpus, and additional statistical information obtained from the corpus to be morphologically disambiguated. The hand-crafted rules are linguistically motivated and tuned to improve precision without sacrificing recall. In certain respects, our approach has been motivated by Brill's recent work, but with the observation that his transformational approach is not directly applicable to languages like Turkish. Our approach also uses a novel approach to unknown word processing by employing a secondary morphological processor which recovers any relevant inflectional and derivational information from a lexical item whose root is unknown. With this approach, well below 1% of the tokens remains as unknown in the texts we have experimented with. Our results indicate that by combining these hand-crafted, statistical and learned information sources, we can attain a recall of 96 to 97% with a corresponding precision of 93 to 94%, and ambiguity of 1.02 to 1.03 parses per token.Comment: M.Sc. Thesis submitted to the Department of Computer Engineering and Information Science, Bilkent University, Ankara, Turkey. Also available as: ftp://ftp.cs.bilkent.edu.tr/pub/tech-reports/1996/BU-CEIS-9615ps.

    Linguistically Motivated Vocabulary Reduction for Neural Machine Translation from Turkish to English

    Get PDF
    The necessity of using a fixed-size word vocabulary in order to control the model complexity in state-of-the-art neural machine translation (NMT) systems is an important bottleneck on performance, especially for morphologically rich languages. Conventional methods that aim to overcome this problem by using sub-word or character-level representations solely rely on statistics and disregard the linguistic properties of words, which leads to interruptions in the word structure and causes semantic and syntactic losses. In this paper, we propose a new vocabulary reduction method for NMT, which can reduce the vocabulary of a given input corpus at any rate while also considering the morphological properties of the language. Our method is based on unsupervised morphology learning and can be, in principle, used for pre-processing any language pair. We also present an alternative word segmentation method based on supervised morphological analysis, which aids us in measuring the accuracy of our model. We evaluate our method in Turkish-to-English NMT task where the input language is morphologically rich and agglutinative. We analyze different representation methods in terms of translation accuracy as well as the semantic and syntactic properties of the generated output. Our method obtains a significant improvement of 2.3 BLEU points over the conventional vocabulary reduction technique, showing that it can provide better accuracy in open vocabulary translation of morphologically rich languages.Comment: The 20th Annual Conference of the European Association for Machine Translation (EAMT), Research Paper, 12 page

    Low-resource machine translation using MATREX: The DCU machine translation system for IWSLT 2009

    Get PDF
    In this paper, we give a description of the Machine Translation (MT) system developed at DCU that was used for our fourth participation in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT 2009). Two techniques are deployed in our system in order to improve the translation quality in a low-resource scenario. The first technique is to use multiple segmentations in MT training and to utilise word lattices in decoding stage. The second technique is used to select the optimal training data that can be used to build MT systems. In this year’s participation, we use three different prototype SMT systems, and the output from each system are combined using standard system combination method. Our system is the top system for Chinese–English CHALLENGE task in terms of BLEU score

    A novel hybrid algorithm for morphological analysis: artificial Neural-Net-XMOR

    Get PDF
    In this study, we present a novel algorithm that combines a rule-based approach and an artificial neural network-based approach in morphological analysis. The usage of hybrid models including both techniques is evaluated for performance improvements. The proposed hybrid algorithm is based on the idea of the dynamic generation of an artificial neural network according to two-level phonological rules. In this study, the combination of linguistic parsing, a neural network-based error correction model, and statistical filtering is utilized to increase the coverage of pure morphological analysis. We experimented hybrid algorithm applying rule-based and long short-term memory-based (LSTM-based) techniques, and the results show that we improved the morphological analysis performance for optical character recognizer (OCR) and social media data. Thus, for the new hybrid algorithm with LSTM, the accuracy reached 99.91% for the OCR dataset and 99.82% for social media data. © TÜBİTAK

    A free/open-source hybrid morphological disambiguation tool for Kazakh

    Get PDF
    This paper presents the results of developing a morphological disambiguation tool for Kazakh. Starting with a previously developed rule-based approach, we tried to cope with the complex morphology of Kazakh by breaking up lexical forms across their derivational boundaries into inflectional groups and modeling their behavior with statistical methods. A hybrid rule-based/statistical approach appears to benefit morphological disambiguation demonstrating a per-token accuracy of 91% in running text

    Statistical Morphological Disambiguation for Kazakh Language

    Get PDF
    This paper presents the results of developing a statistical model for morphological disambiguation of Kazakh text. Starting with basic assumptions we tried to cope with the complex morphology of Kazakh language by breaking up lexical forms across their derivational boundaries into inflectional groups and modeling their behavior with statistical methods. We also provide maximum likelihood estimates for the parameters and an effective way to perform disambiguation with the Viterbi algorithm

    A free/open-source hybrid morphological disambiguation tool for Kazakh

    Get PDF
    This paper presents the results of developing a morphological disambiguation tool for Kazakh. Starting with a previously developed rule-based approach, we tried to cope with the complex morphology of Kazakh by breaking up lexical forms across their derivational boundaries into inflectional groups and modeling their behavior with statistical methods. A hybrid rule-based/statistical approach appears to benefit morphological disambiguation demonstrating a per-token accuracy of 91% in running text
    corecore