936 research outputs found

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Identify submitochondria and subchloroplast locations with pseudo amino acid composition: Approach from the strategy of discrete wavelet transform feature extraction

    Get PDF
    AbstractIt is very challenging and complicated to predict protein locations at the sub-subcellular level. The key to enhancing the prediction quality for protein sub-subcellular locations is to grasp the core features of a protein that can discriminate among proteins with different subcompartment locations. In this study, a different formulation of pseudoamino acid composition by the approach of discrete wavelet transform feature extraction was developed to predict submitochondria and subchloroplast locations. As a result of jackknife cross-validation, with our method, it can efficiently distinguish mitochondrial proteins from chloroplast proteins with total accuracy of 98.8% and obtained a promising total accuracy of 93.38% for predicting submitochondria locations. Especially the predictive accuracy for mitochondrial outer membrane and chloroplast thylakoid lumen were 82.93% and 82.22%, respectively, showing an improvement of 4.88% and 27.22% when other existing methods were compared. The results indicated that the proposed method might be employed as a useful assistant technique for identifying sub-subcellular locations. We have implemented our algorithm as an online service called SubIdent (http://bioinfo.ncu.edu.cn/services.aspx)

    Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence

    Get PDF
    BACKGROUND: Knowing the submitochondria localization of a mitochondria protein is an important step to understand its function. We develop a method which is based on an extended version of pseudo-amino acid composition to predict the protein localization within mitochondria. This work goes one step further than predicting protein subcellular location. We also try to predict the membrane protein type for mitochondrial inner membrane proteins. RESULTS: By using leave-one-out cross validation, the prediction accuracy is 85.5% for inner membrane, 94.5% for matrix and 51.2% for outer membrane. The overall prediction accuracy for submitochondria location prediction is 85.2%. For proteins predicted to localize at inner membrane, the accuracy is 94.6% for membrane protein type prediction. CONCLUSION: Our method is an effective method for predicting protein submitochondria location. But even with our method or the methods at subcellular level, the prediction of protein submitochondria location is still a challenging problem. The online service SubMito is now available at

    Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features

    Get PDF
    Background: Study of drug-target interaction networks is an important topic for drug development. It is both timeconsuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings: To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance: Our results indicate that the network prediction system thus established is quite promising an

    PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence

    Get PDF
    Sequence-derived structural and physicochemical features have frequently been used in the development of statistical learning models for predicting proteins and peptides of different structural, functional and interaction profiles. PROFEAT (Protein Features) is a web server for computing commonly-used structural and physicochemical features of proteins and peptides from amino acid sequence. It computes six feature groups composed of ten features that include 51 descriptors and 1447 descriptor values. The computed features include amino acid composition, dipeptide composition, normalized Moreau–Broto autocorrelation, Moran autocorrelation, Geary autocorrelation, sequence-order-coupling number, quasi-sequence-order descriptors and the composition, transition and distribution of various structural and physicochemical properties. In addition, it can also compute previous autocorrelations descriptors based on user-defined properties. Our computational algorithms were extensively tested and the computed protein features have been used in a number of published works for predicting proteins of functional classes, protein–protein interactions and MHC-binding peptides. PROFEAT is accessible a

    An improved classification of G-protein-coupled receptors using sequence-derived features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>G-protein-coupled receptors (GPCRs) play a key role in diverse physiological processes and are the targets of almost two-thirds of the marketed drugs. The 3 D structures of GPCRs are largely unavailable; however, a large number of GPCR primary sequences are known. To facilitate the identification and characterization of novel receptors, it is therefore very valuable to develop a computational method to accurately predict GPCRs from the protein primary sequences.</p> <p>Results</p> <p>We propose a new method called PCA-GPCR, to predict GPCRs using a comprehensive set of 1497 sequence-derived features. The <it>principal component analysis </it>is first employed to reduce the dimension of the feature space to 32. Then, the resulting 32-dimensional feature vectors are fed into a simple yet powerful classification algorithm, called intimate sorting, to predict GPCRs at <it>five </it>levels. The prediction at the first level determines whether a protein is a GPCR or a non-GPCR. If it is predicted to be a GPCR, then it will be further predicted into certain <it>family</it>, <it>subfamily</it>, <it>sub-subfamily </it>and <it>subtype </it>by the classifiers at the second, third, fourth, and fifth levels, respectively. To train the classifiers applied at five levels, a non-redundant dataset is carefully constructed, which contains 3178, 1589, 4772, 4924, and 2741 protein sequences at the respective levels. Jackknife tests on this training dataset show that the overall accuracies of PCA-GPCR at five levels (from the first to the fifth) can achieve up to 99.5%, 88.8%, 80.47%, 80.3%, and 92.34%, respectively. We further perform predictions on a dataset of 1238 GPCRs at the second level, and on another two datasets of 167 and 566 GPCRs respectively at the fourth level. The overall prediction accuracies of our method are consistently higher than those of the existing methods to be compared.</p> <p>Conclusions</p> <p>The comprehensive set of 1497 features is believed to be capable of capturing information about amino acid composition, sequence order as well as various physicochemical properties of proteins. Therefore, high accuracies are achieved when predicting GPCRs at all the five levels with our proposed method.</p

    Molecular Science for Drug Development and Biomedicine

    Get PDF
    With the avalanche of biological sequences generated in the postgenomic age, molecular science is facing an unprecedented challenge, i.e., how to timely utilize the huge amount of data to benefit human beings. Stimulated by such a challenge, a rapid development has taken place in molecular science, particularly in the areas associated with drug development and biomedicine, both experimental and theoretical. The current thematic issue was launched with the focus on the topic of “Molecular Science for Drug Development and Biomedicine”, in hopes to further stimulate more useful techniques and findings from various approaches of molecular science for drug development and biomedicine
    corecore