7 research outputs found

    A Novel Antenna Selection Scheme for Spatially Correlated Massive MIMO Uplinks with Imperfect Channel Estimation

    Full text link
    We propose a new antenna selection scheme for a massive MIMO system with a single user terminal and a base station with a large number of antennas. We consider a practical scenario where there is a realistic correlation among the antennas and imperfect channel estimation at the receiver side. The proposed scheme exploits the sparsity of the channel matrix for the effective selection of a limited number of antennas. To this end, we compute a sparse channel matrix by minimising the mean squared error. This optimisation problem is then solved by the well-known orthogonal matching pursuit algorithm. Widely used models for spatial correlation among the antennas and channel estimation errors are considered in this work. Simulation results demonstrate that when the impacts of spatial correlation and imperfect channel estimation introduced, the proposed scheme in the paper can significantly reduce complexity of the receiver, without degrading the system performance compared to the maximum ratio combining.Comment: in Proc. IEEE 81st Vehicular Technology Conference (VTC), May 2015, 6 pages, 5 figure

    Massive MIMO Performance With Imperfect Channel Reciprocity and Channel Estimation Error

    Full text link

    Geringer RF-KomplexitÀt Massive MIMO Systemen: Antennenselektion und Hybrid Analog-Digital Strahlformung

    Get PDF
    Wireless data traffic has been increased dramatically in the last decades, and will continue to increase in the future. As a consequence, the infrastructure of wireless communication systems needs to advance on the data capacity. Massive Multiple-Input Multiple-Output (MIMO) is a promising candidate technology to meet the demand. By scaling up the conventional MIMO by orders of magnitude number of \emph{active} antennas, a massive MIMO system can harvest considerable channel degrees of freedom to increase the spectral efficiency. However, increasing the number of \emph{active} antennas needs to increase both the numbers of Radio Frequency (RF) transceivers and antenna elements \emph{at the same rate}, which will increase the RF complexity and cost dramatically. It is known that the complexity and cost of antenna elements are usually much lower than that of RF transceivers, which motivates us to scale up MIMO by a lower increasing rate of the number of RF transceivers than that of antenna elements, resulting in so-called low RF-complexity massive MIMO systems. In this thesis, we study two types of low RF-complexity massive MIMO systems, i.e., massive MIMO antenna selection systems and massive MIMO hybrid analog-digital beamforming systems. Both systems use specific RF networks to bridge a massive number of antennas and a small number of RF transceivers, leading to signal dimension reduction from antennas to RF transceivers. The RF network used in antenna selection is referred to as RF switching network; while the RF network used in hybrid beamforming is referred to as Phase Shifting Network (PSN). Both RF networks have two types of architectures, i.e., full-array architecture and sub-array architecture. The latter has lower insertion loss, lower complexity and better scalability than the former, but at the price of performance degradation caused by connection constraint, which will be studied for both low RF-complexity systems in this thesis. In addition, a low RF-complexity PSN for the hybrid analog-digital beamforming system needs also to be studied to replace the conventional high-complexity-and-cost phase-shifter-based PSN. In the antenna selection system, the upper bounds on the channel capacity using asymptotic theory on order statistics are derived at the large-scale limit. The optimal antenna selection algorithms are also developed, which are based on Branch And Bound (BAB) search algorithm. Through the theoretical and algorithm studies, it is found that the sub-array antenna selection has close performance to the full-array antenna selection. In the hybrid beamforming system, we propose to use Rotman lens as PSN, which is of lower complexity and cost than the conventional phase-shifter-based PSN. Two beam selection algorithms, i.e., sub-optimal greedy search and optimal BAB search, are also proposed. In addition, the Rotman lenses are designed, fabricated and measured. The measurement results together with the beam selection algorithms are used to perform Monte Carlo simulation. Simulation results show that the proposed Rotman-lens-based system with the sub-array architecture suffers noticeable performance degradation compared to the system with the full-array architecture when ideal Rotman lenses are used. But when practical non-ideal Rotman lens are used, the former outperforms the latter when the number of antennas is large enough. Most interestingly, with non-ideal hardware, the sub-array Rotman-lens-based system has close performance to the sub-array phase-shifter-based system, and also exhibits a wideband capability. To prove the advantage of the low RF-complexity massive MIMO, two testbeds are built up for the antenna selection and hybrid beamforming systems, respectively. The measurement results show the low RF-complexity massive MIMO systems have superior performance over the small-scale MIMO systems under the condition of the same number of RF transceivers. The results in this thesis show that the low RF-complexity massive MIMO systems proposed in this thesis are feasible in technology and promising in performance, validating its potential usage for the future 5G wireless communication systems.Der drahtlose Datenverkehr ist in den letzten Jahrzehnten dramatisch gestiegen und wird auch in Zukunft weiter zunehmen. Infolgedessen muss die DatenkapazitĂ€t der drahtlosen Infrastruktur erhöht werden. Mehrantennen Systeme mit einer sehr großen Anzahl an Antennen (engl. Massive Multiple-Input Multiple-Output (MIMO)) sind vielversprechende Technologiekandidaten, um diese Nachfrage zu erfĂŒllen. Durch die Hochskalierung der Antennenanzahl eines konventionellen MIMO um mehrere GrĂ¶ĂŸenordnungen kann ein Massive MIMO-System erhebliche Kanalfreiheitsgrade erlangen, um die spektrale Effizienz zu verbessern. Allerdings muss mit der Anzahl der \emph{aktiven} Antennen sowohl die Anzahl der Hochfrequenz (engl. Radio Frequency (RF)) Transceiver als auch die der Antennenelemente \emph{im gleichen Maße} vergrössert werden, was die RF-KomplexitĂ€t und Kosten dramatisch erhöht. Dabei ist bekannt, dass die KomplexitĂ€t und die Kosten von Antennenelementen in der Regel viel niedriger sind als die von RF-Transceivern. Dies fĂŒhrt uns dazu dass wir das MIMO-System um eine im VerhĂ€ltnis zur Antennenzahl geringere Anzahl von RF-Transceivern erweitern wollen, den so genannten Massive MIMO-Systemen mit geringer RF-KomplexitĂ€t. In dieser Arbeit untersuchen wir zwei Arten von Massive MIMO-Systemen mit geringer RF-KomplexitĂ€t, nĂ€mlich Massive MIMO-Antennenselektionssysteme und Massive MIMO-Hybrid-Analog-Digital-Strahlformungssysteme. Beide Systeme verwenden spezielle RF-Netzwerke, um eine grĂ¶ĂŸere Anzahl von Antennen von einer kleineren Anzahl von RF-Transceivern zu versorgen, was zu einer Signalraumreduktion von den Antennen zu den RF-Transceivern fĂŒhrt. Das bei der Antennenselektions verwendete RF-Netzwerk wird als RF-Koppelfeld bezeichnet, wĂ€hrend das RF-Netzwerk, das bei der Hybrid-Strahlformung verwendet wird, als Phasenverschiebungsnetzwerk (engl. Phase Shifting Network, PSN) bezeichnet wird. Beide RF-Netzwerke können als Voll-Array-Architektur oder als Sub-Array-Architektur realisiert werden. Letztere hat eine geringere EinfĂŒgedĂ€mpfung, eine geringere KomplexitĂ€t und eine bessere Skalierbarkeit als die erstere, aber zum Preis der Leistungsverschlechterung, die durch eine eingeschrĂ€nkung Anzahl von Antennen-Transceiver-Verbindungen verursacht wird. Die vorliegende Arbeit untersucht dies fĂŒr beide Systeme mit niedriger RF-KomplexitĂ€t. DarĂŒber hinaus wird auch ein PSN mit niedriger RF-KomplexitĂ€t fĂŒr das Hybride-Analog-Digital- Strahlformungssystem untersucht, das das herkömmliche hochkomplexe und kostenintensive PSN ersetzen soll. Im Antennenselektionssystem werden die Obergrenzen der KanalkapazitĂ€t unter Verwendung der Asymptoten Theorie der Ordnungsstatistik im Grenzverhalten abgeleitet. Die optimalen Antennenselektions-Algorithmen, die auf dem Branch and Bound (BAB) Suchalgorithmus basieren, werden ebenfalls entwickelt. Die theoretischen und algorithmischen Untersuchungen zeigen, dass die Leistung der Sub-Array-Antennenauswahl dicht bei der der Voll-Array-Antennenselektions liegt. Im Hybrid-Strahlformungssystem schlagen wir vor, eine Rotman-Linse als PSN zu verwenden, die von geringerer KomplexitĂ€t und Kosten ist als das herkömmliche auf Phasenverschiebung basierende PSN. Es werden zwei Strahlauswahlalgorithmen vorgeschlagen, eine suboptimale Greedy-Suche und eine optimale BAB-Suche. DarĂŒber hinaus wird die Rotman-Linse entworfen, gefertigt und vermessen. Die Messergebnisse werden zusammen mit den Strahlselektionsalgorithmen zur DurchfĂŒhrung einer Monte-Carlo-Simulation verwendet. Simulationsergebnisse zeigen, dass das vorgeschlagene Rotman-Linsen-basierte System mit der Sub-Array-Architektur eine spĂŒrbare Leistungsverschlechterung im Vergleich zum System mit der Full-Array-Architektur erleidet, wenn ideale Rotman-Linsen verwendet werden. Aber wenn reale nicht-ideale Rotman-Linsen verwendet werden, ĂŒbertrifft erstere die zweite, wenn die Anzahl der Antennen groß genug ist. Noch interessanter, mit nicht-idealer Hardware, zeigt das Sub-Array Rotman-Linsen-basierte System in etwa die gleiche Leistung wie das Sub-Array Phasenschieber-basierte System und weist auch BreitbandfĂ€higkeiten auf. Um den Vorteil der Massive MIMO-Systeme mit geringer RF-KomplexitĂ€t zu beweisen, werden zwei Testumgebungen fĂŒr die Antennenauswahl- und Hybrid-Strahlformungssysteme aufgebaut. Die Messergebnisse zeigen, dass, unter der Bedingung einer gleichen Anzahl von RF-Transceivern, die Massive MIMO-Systeme mit geringer RF-KomplexitĂ€t in der Leistung den normalen MIMO-Systemen ĂŒberlegen sind. Die Ergebnisse meiner Arbeit zeigen, dass die von mir vorgeschlagenen Massive MIMO-Systeme mit geringer RF-KomplexitĂ€t technisch machbar und vielversprechend in der Leistung sind und bestĂ€tigen damit deren potentielle Nutzung fĂŒr die zukĂŒnftigen 5G-Funkkommunikationssysteme
    corecore