590 research outputs found

    A probabilistic approach to reduce the route establishment overhead in AODV algorithm for manet

    Full text link
    Mobile Ad-hoc Networks (MANETS) is a collection of wireless nodes without any infrastructure support. The nodes in MANET can act as either router or source and the control of the network is distributed among nodes. The nodes in MANETS are highly mobile and it maintains dynamic interconnection between those mobile nodes. MANTEs have been considered as isolated stand-alone network. This can turn the dream of networking "at any time and at any where" into reality. The main purpose of this paper is to study the issues in route discovery process in AODV protocol for MANET. Flooding of route request message imposes major concern in route establishment. This paper suggests a new approach to reduce the routing overhead during the route discovery phase. By considering the previous behaviour of the network, the new protocol reduces the unwanted searches during route establishment processComment: International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.2, March 201

    EASR: Graph-based Framework for Energy Efficient Smart Routing in MANET using Availability Zones

    Get PDF
    Energy consumption in MobileAdhoc Network (MANET) is a topic of research from more than a decade. Althoughthere are multiple archival of literatures, that have proposed variousenergy-efficient algorithms for reducing the energy consumption to improveenergy efficiency. Establishing correct and reliable route is important designissue in MANET, but a more challenging goal is to provide energy efficientroute. But, it was observed that majority of such energy efficient routingprotocols just give symptomatic solution which addresses and mitigated theenergy issues overlooking various associated issues like quality of services.Moreover, in majority of research previous studies it is found that AODV andDSDV are highly in adoption rate among the researcher for solving energy issuesusing routing protocols. This manuscript after reviewing some of thesignificant literatures in past explored issues in existing AODV and DSDVand  proposes a novel energy efficientrouting protocols by incorporating a new actor called availability zone. Theproposed model shows better energy efficiency and QoS compared to AODV andDSDV

    Review of Ad Hoc Networks scenarios and challenges in years 2015-2019

    Get PDF
    A Mobile Ad-hoc Network (MANET) protocol performance analysis depends on the type of simulation tools, mobility models, and metrics used. These parameters\u27 choice is crucial to researchers because it may produce an inaccurate result if it is not well chosen. The challenges researcher is facing are on the choice of these four parameters. Our survey shows an inclination to used Ad-hoc On-Demand Distance Vector routing (AODV) for performance comparison and enhancement of it by the researcher. Network simulation 2 (NS2) was the most selected tool, but we observe a decline in its utilization in recent years. Random Waypoint Mobility model (RWPM) was the most used mobility model. We have found a high percentage of the published article did not mention the mobility models use; this will make the result difficult for performance comparison with other works. Packet Delivery Ratio (PDR), End to End Delay (E2ED) were the most used metrics. Some authors have self-developed their simulation tools; the authors have also used new metrics and protocols to get a particular result based on their research objective. However, some criteria of choosing a protocol, metrics, mobility model, and simulation tool were not described, decreasing the credibility of their papers\u27 results. Improvement needs to be done in the Ad-hoc network in terms of benchmark, acceptable scenario parameters. This survey will give the best practice to be used and some recommendations to the Ad-hoc network community

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    Dynamic routing discovery scheme for high mobility in mobile ad hoc wireless networks

    Get PDF
    An innovative technology that is widely used in many applications is the Mobile Ad-hoc Network (MANET). Discovery and maintenance of routes at MANET are important issues. Within MANET, broadcasting is used to discover a path within on-demand routing protocols. Establishing and maintaining a route periodically among the nodes is the challenge that requires the transmitting of control packets across a network. This state leads to the issue of broadcasting storms. Broadcasting control packets increase control packets overhead and decrease network performance. In this paper, we proposed a scheme called AODV-Velocity and Dynamic (AODV-VD) for effective broadcast control packets. The routing protocol for the ad-hoc on-demand distance victor (AODV) is used to implement the proposed AODV-VD scheme. AODV-VD scheme reduces both the excessive route discovery control packets and network overhead. Network simulator version 2.35 (NS2.35) was used to compare the proposed AODV-VD scheme to the AODV routing protocol in terms of end-to-end latency, average throughput, packet transmission ratio and overhead ratio

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this  an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    A Comparative Analysis of OLSR Routing Protocol based on PSO and Cuckoo Search Optimization (CSO) in Manets

    Get PDF
    New developments in wireless communication have enabled the use of highly efficient and inexpensive wireless receivers in a variety of portable applications. Each node in a mobile network is a mobile device that independently organizes its own connection to the others and manages its own data transmissions. The adaptability, scalability, and cost reduction of mobile networks have attracted considerable attention. Because mobile networks are constantly changing, problems with routing and power usage are common. High error rates, energy limitations, and inadequate bandwidth are just a few of the issues plaguing mobile ad hoc networks. The relevance of routing protocols in dynamic multi-hop networks like Mobile Ad hoc Networks (MANET) has drawn the attention of many scholars. In this paper, we focus on  implementing an OLSR(Optimised Link State  Routing) protocol and evaluates its performance using two optmisation algorithm: Particle Swarm Optimization(OLSR) and Cuckoo Search Optimization (CSO). The simulation result suggests that PSO is superior to both CSO and the conventional OLSR routing technique. We implemented using NS-2 simulator for simulation and NAM for network animation
    • …
    corecore