28,298 research outputs found

    Novel Approaches to the Representation and Analysis of 3D Segmented Anatomical Districts

    Get PDF
    Nowadays, image processing and 3D shape analysis are an integral part of clinical practice and have the potentiality to support clinicians with advanced analysis and visualization techniques. Both approaches provide visual and quantitative information to medical practitioners, even if from different points of view. Indeed, shape analysis is aimed at studying the morphology of anatomical structures, while image processing is focused more on the tissue or functional information provided by the pixels/voxels intensities levels. Despite the progress obtained by research in both fields, a junction between these two complementary worlds is missing. When working with 3D models analyzing shape features, the information of the volume surrounding the structure is lost, since a segmentation process is needed to obtain the 3D shape model; however, the 3D nature of the anatomical structure is represented explicitly. With volume images, instead, the tissue information related to the imaged volume is the core of the analysis, while the shape and morphology of the structure are just implicitly represented, thus not clear enough. The aim of this Thesis work is the integration of these two approaches in order to increase the amount of information available for physicians, allowing a more accurate analysis of each patient. An augmented visualization tool able to provide information on both the anatomical structure shape and the surrounding volume through a hybrid representation, could reduce the gap between the two approaches and provide a more complete anatomical rendering of the subject. To this end, given a segmented anatomical district, we propose a novel mapping of volumetric data onto the segmented surface. The grey-levels of the image voxels are mapped through a volume-surface correspondence map, which defines a grey-level texture on the segmented surface. The resulting texture mapping is coherent to the local morphology of the segmented anatomical structure and provides an enhanced visual representation of the anatomical district. The integration of volume-based and surface-based information in a unique 3D representation also supports the identification and characterization of morphological landmarks and pathology evaluations. The main research contributions of the Ph.D. activities and Thesis are: \u2022 the development of a novel integration algorithm that combines surface-based (segmented 3D anatomical structure meshes) and volume-based (MRI volumes) information. The integration supports different criteria for the grey-levels mapping onto the segmented surface; \u2022 the development of methodological approaches for using the grey-levels mapping together with morphological analysis. The final goal is to solve problems in real clinical tasks, such as the identification of (patient-specific) ligament insertion sites on bones from segmented MR images, the characterization of the local morphology of bones/tissues, the early diagnosis, classification, and monitoring of muscle-skeletal pathologies; \u2022 the analysis of segmentation procedures, with a focus on the tissue classification process, in order to reduce operator dependency and to overcome the absence of a real gold standard for the evaluation of automatic segmentations; \u2022 the evaluation and comparison of (unsupervised) segmentation methods, finalized to define a novel segmentation method for low-field MR images, and for the local correction/improvement of a given segmentation. The proposed method is simple but effectively integrates information derived from medical image analysis and 3D shape analysis. Moreover, the algorithm is general enough to be applied to different anatomical districts independently of the segmentation method, imaging techniques (such as CT), or image resolution. The volume information can be integrated easily in different shape analysis applications, taking into consideration not only the morphology of the input shape but also the real context in which it is inserted, to solve clinical tasks. The results obtained by this combined analysis have been evaluated through statistical analysis

    Ball-Scale Based Hierarchical Multi-Object Recognition in 3D Medical Images

    Full text link
    This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.Comment: This paper was published and presented in SPIE Medical Imaging 201
    corecore