2 research outputs found

    A Notion of Dynamic Interface for Depth-Bounded Object-Oriented Packages

    Full text link
    Programmers using software components have to follow protocols that specify when it is legal to call particular methods with particular arguments. For example, one cannot use an iterator over a set once the set has been changed directly or through another iterator. We formalize the notion of dynamic package interfaces (DPI), which generalize state-machine interfaces for single objects, and give an algorithm to statically compute a sound abstraction of a DPI. States of a DPI represent (unbounded) sets of heap configurations and edges represent the effects of method calls on the heap. We introduce a novel heap abstract domain based on depth-bounded systems to deal with potentially unboundedly many objects and the references among them. We have implemented our algorithm and show that it is effective in computing representations of common patterns of package usage, such as relationships between viewer and label, container and iterator, and JDBC statements and cursors

    Dynamic Package Interfaces - Extended Version

    Full text link
    A hallmark of object-oriented programming is the ability to perform computation through a set of interacting objects. A common manifestation of this style is the notion of a package, which groups a set of commonly used classes together. A challenge in using a package is to ensure that a client follows the implicit protocol of the package when calling its methods. Violations of the protocol can cause a runtime error or latent invariant violations. These protocols can extend across different, potentially unboundedly many, objects, and are specified informally in the documentation. As a result, ensuring that a client does not violate the protocol is hard. We introduce dynamic package interfaces (DPI), a formalism to explicitly capture the protocol of a package. The DPI of a package is a finite set of rules that together specify how any set of interacting objects of the package can evolve through method calls and under what conditions an error can happen. We have developed a dynamic tool that automatically computes an approximation of the DPI of a package, given a set of abstraction predicates. A key property of DPI is that the unbounded number of configurations of objects of a package are summarized finitely in an abstract domain. This uses the observation that many packages behave monotonically: the semantics of a method call over a configuration does not essentially change if more objects are added to the configuration. We have exploited monotonicity and have devised heuristics to obtain succinct yet general DPIs. We have used our tool to compute DPIs for several commonly used Java packages with complex protocols, such as JDBC, HashSet, and ArrayList.Comment: The only changes compared to v1 are improvements to the Abstract and Introductio
    corecore