18,690 research outputs found

    Complexity of Equivalence and Learning for Multiplicity Tree Automata

    Full text link
    We consider the complexity of equivalence and learning for multiplicity tree automata, i.e., weighted tree automata over a field. We first show that the equivalence problem is logspace equivalent to polynomial identity testing, the complexity of which is a longstanding open problem. Secondly, we derive lower bounds on the number of queries needed to learn multiplicity tree automata in Angluin's exact learning model, over both arbitrary and fixed fields. Habrard and Oncina (2006) give an exact learning algorithm for multiplicity tree automata, in which the number of queries is proportional to the size of the target automaton and the size of a largest counterexample, represented as a tree, that is returned by the Teacher. However, the smallest tree-counterexample may be exponential in the size of the target automaton. Thus the above algorithm does not run in time polynomial in the size of the target automaton, and has query complexity exponential in the lower bound. Assuming a Teacher that returns minimal DAG representations of counterexamples, we give a new exact learning algorithm whose query complexity is quadratic in the target automaton size, almost matching the lower bound, and improving the best previously-known algorithm by an exponential factor

    Practical experiments with regular approximation of context-free languages

    Get PDF
    Several methods are discussed that construct a finite automaton given a context-free grammar, including both methods that lead to subsets and those that lead to supersets of the original context-free language. Some of these methods of regular approximation are new, and some others are presented here in a more refined form with respect to existing literature. Practical experiments with the different methods of regular approximation are performed for spoken-language input: hypotheses from a speech recognizer are filtered through a finite automaton.Comment: 28 pages. To appear in Computational Linguistics 26(1), March 200

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    Learning-Based Synthesis of Safety Controllers

    Full text link
    We propose a machine learning framework to synthesize reactive controllers for systems whose interactions with their adversarial environment are modeled by infinite-duration, two-player games over (potentially) infinite graphs. Our framework targets safety games with infinitely many vertices, but it is also applicable to safety games over finite graphs whose size is too prohibitive for conventional synthesis techniques. The learning takes place in a feedback loop between a teacher component, which can reason symbolically about the safety game, and a learning algorithm, which successively learns an overapproximation of the winning region from various kinds of examples provided by the teacher. We develop a novel decision tree learning algorithm for this setting and show that our algorithm is guaranteed to converge to a reactive safety controller if a suitable overapproximation of the winning region can be expressed as a decision tree. Finally, we empirically compare the performance of a prototype implementation to existing approaches, which are based on constraint solving and automata learning, respectively
    • …
    corecore