8,523 research outputs found

    Linear logic for constructive mathematics

    Full text link
    We show that numerous distinctive concepts of constructive mathematics arise automatically from an interpretation of "linear higher-order logic" into intuitionistic higher-order logic via a Chu construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of classical concepts using the choice between multiplicative and additive linear connectives. Linear logic thus systematically "constructivizes" classical definitions and deals automatically with the resulting bookkeeping, and could potentially be used directly as a basis for constructive mathematics in place of intuitionistic logic.Comment: 39 page

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Co-constructive logics for proofs and refutations

    Get PDF
    This paper considers logics which are formally dual to intuition- istic logic in order to investigate a co-constructive logic for proofs and refu- tations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely- held assumptions, to a justification of bivalence. For example, we do not want to equate falsity with the non-existence of a proof since this would render a statement such as “pi is transcendental” false prior to 1882. In addition, the intuitionist account of negation as shorthand for the derivation of absurdity is inadequate, particularly outside of purely mathematical contexts. To deal with these issues, I investigate the dual of intuitionistic logic, co-intuitionistic logic, as a logic of refutation, alongside intuitionistic logic of proofs. Direct proof and refutation are dual to each other, and are constructive, whilst there also exist syntactic, weak, negations within both logics. In this respect, the logic of refutation is weakly paraconsistent in the sense that it allows for state- ments for which, neither they, nor their negation, are refuted. I provide a proof theory for the co-constructive logic, a formal dualizing map between the logics, and a Kripke-style semantics. This is given an intuitive philosophical rendering in a re-interpretation of Kolmogorov’s logic of problems

    Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability

    Full text link
    We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell's inequality among others. Quantum gambles are closely related to quantum logic and provide a new semantics to it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.Comment: 21 pages, 2 figure

    Co-constructive logic for proofs and refutations

    Get PDF
    This paper considers logics which are formally dual to intuitionistic logic in order to investigate a co-constructive logic for proofs and refutations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely-held assumptions, to a justification of bivalence. For example, we do not want to equate falsity with the non-existence of a proof since this would render a statement such as “pi is transcendental” false prior to 1882. In addition, the intuitionist account of negation as shorthand for the derivation of absurdity is inadequate, particularly outside of purely mathematical contexts. To deal with these issues, I investigate the dual of intuitionistic logic, co-intuitionistic logic, as a logic of refutation, alongside intuitionistic logic of proofs. Direct proof and refutation are dual to each other, and are constructive, whilst there also exist syntactic, weak, negations within both logics. In this respect, the logic of refutation is weakly paraconsistent in the sense that it allows for statements for which, neither they, nor their negation, are refuted. I provide a proof theory for the co-constructive logic, a formal dualizing map between the logics, and a Kripke-style semantics. This is given an intuitive philosophical rendering in a re-interpretation of Kolmogorov’s logic of problems

    A predicative variant of a realizability tripos for the Minimalist Foundation.

    Get PDF
    open2noHere we present a predicative variant of a realizability tripos validating the intensional level of the Minimalist Foundation extended with Formal Church thesis.the file attached contains the whole number of the journal including the mentioned pubblicationopenMaietti, Maria Emilia; Maschio, SamueleMaietti, MARIA EMILIA; Maschio, Samuel

    Dialectica Interpretation with Marked Counterexamples

    Full text link
    Goedel's functional "Dialectica" interpretation can be used to extract functional programs from non-constructive proofs in arithmetic by employing two sorts of higher-order witnessing terms: positive realisers and negative counterexamples. In the original interpretation decidability of atoms is required to compute the correct counterexample from a set of candidates. When combined with recursion, this choice needs to be made for every step in the extracted program, however, in some special cases the decision on negative witnesses can be calculated only once. We present a variant of the interpretation in which the time complexity of extracted programs can be improved by marking the chosen witness and thus avoiding recomputation. The achieved effect is similar to using an abortive control operator to interpret computational content of non-constructive principles.Comment: In Proceedings CL&C 2010, arXiv:1101.520
    • …
    corecore