4 research outputs found

    Acquaintance time of random graphs near connectivity threshold

    Full text link
    Benjamini, Shinkar, and Tsur stated the following conjecture on the acquaintance time: asymptotically almost surely AC(G)p1logO(1)nAC(G) \le p^{-1} \log^{O(1)} n for a random graph GG(n,p)G \in G(n,p), provided that GG is connected. Recently, Kinnersley, Mitsche, and the second author made a major step towards this conjecture by showing that asymptotically almost surely AC(G)=O(logn/p)AC(G) = O(\log n / p), provided that GG has a Hamiltonian cycle. In this paper, we finish the task by showing that the conjecture holds in the strongest possible sense, that is, it holds right at the time the random graph process creates a connected graph. Moreover, we generalize and investigate the problem for random hypergraphs

    The acquaintance time of (percolated) random geometric graphs

    Full text link
    In this paper, we study the acquaintance time \AC(G) defined for a connected graph GG. We focus on \G(n,r,p), a random subgraph of a random geometric graph in which nn vertices are chosen uniformly at random and independently from [0,1]2[0,1]^2, and two vertices are adjacent with probability pp if the Euclidean distance between them is at most rr. We present asymptotic results for the acquaintance time of \G(n,r,p) for a wide range of p=p(n)p=p(n) and r=r(n)r=r(n). In particular, we show that with high probability \AC(G) = \Theta(r^{-2}) for G \in \G(n,r,1), the "ordinary" random geometric graph, provided that πnr2lnn\pi n r^2 - \ln n \to \infty (that is, above the connectivity threshold). For the percolated random geometric graph G \in \G(n,r,p), we show that with high probability \AC(G) = \Theta(r^{-2} p^{-1} \ln n), provided that p n r^2 \geq n^{1/2+\eps} and p < 1-\eps for some \eps>0

    Aspects of random graphs

    Get PDF
    The present report aims at giving a survey of my work since the end of my PhD thesis "Spectral Methods for Reconstruction Problems". Since then I focussed on the analysis of properties of different models of random graphs as well as their connection to real-world networks. This report's goal is to capture these problems in a common framework. The very last chapter of this thesis about results in bootstrap percolation is different in the sense that the given graph is deterministic and only the decision of being active for each vertex is probabilistic; since the proof techniques resemble very much results on random graphs, we decided to include them as well. We start with an overview of the five random graph models, and with the description of bootstrap percolation corresponding to the last chapter. Some properties of these models are then analyzed in the different parts of this thesis
    corecore