25,588 research outputs found

    Statistical hyperbolicity in groups

    Full text link
    In this paper, we introduce a geometric statistic called the "sprawl" of a group with respect to a generating set, based on the average distance in the word metric between pairs of words of equal length. The sprawl quantifies a certain obstruction to hyperbolicity. Group presentations with maximum sprawl (i.e., without this obstruction) are called statistically hyperbolic. We first relate sprawl to curvature and show that nonelementary hyperbolic groups are statistically hyperbolic, then give some results for products, for Diestel-Leader graphs and lamplighter groups. In free abelian groups, the word metrics asymptotically approach norms induced by convex polytopes, causing the study of sprawl to reduce to a problem in convex geometry. We present an algorithm that computes sprawl exactly for any generating set, thus quantifying the failure of various presentations of Z^d to be hyperbolic. This leads to a conjecture about the extreme values, with a connection to the classic Mahler conjecture.Comment: 14 pages, 5 figures. This is split off from the paper "The geometry of spheres in free abelian groups.

    \v{C}ech-Delaunay gradient flow and homology inference for self-maps

    Full text link
    We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspace of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for \v{C}ech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive \v{C}ech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.Comment: 22 pages, 8 figure

    Robust Algorithm to Generate a Diverse Class of Dense Disordered and Ordered Sphere Packings via Linear Programming

    Full text link
    We have formulated the problem of generating periodic dense paritcle packings as an optimization problem called the Adaptive Shrinking Cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E {\bf 80}, 041104 (2009)]. Because the objective function and impenetrability constraints can be exactly linearized for sphere packings with a size distribution in dd-dimensional Euclidean space Rd\mathbb{R}^d, it is most suitable and natural to solve the corresponding ASC optimization problem using sequential linear programming (SLP) techniques. We implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in Rd\mathbb{R}^d for d=2,3,4,5d=2,3,4,5 and 66 with a diversity of disorder and densities up to the maximally densities. This deterministic algorithm can produce a broad range of inherent structures besides the usual disordered ones with very small computational cost by tuning the radius of the {\it influence sphere}. In three dimensions, we show that it can produce with high probability a variety of strictly jammed packings with a packing density anywhere in the wide range [0.6,0.7408...][0.6, 0.7408...]. We also apply the algorithm to generate various disordered packings as well as the maximally dense packings for d=2,3,4,5d=2,3, 4,5 and 6. Compared to the LS procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered jammed packings with anomalously low densities, and is appreciably more robust and computationally faster at generating maximally dense packings, especially as the space dimension increases.Comment: 34 pages, 6 figure
    corecore