28,939 research outputs found

    A second derivative SQP method: theoretical issues

    Get PDF
    Sequential quadratic programming (SQP) methods form a class of highly efficient algorithms for solving nonlinearly constrained optimization problems. Although second derivative information may often be calculated, there is little practical theory that justifies exact-Hessian SQP methods. In particular, the resulting quadratic programming (QP) subproblems are often nonconvex, and thus finding their global solutions may be computationally nonviable. This paper presents a second-derivative SQP method based on quadratic subproblems that are either convex, and thus may be solved efficiently, or need not be solved globally. Additionally, an explicit descent-constraint is imposed on certain QP subproblems, which “guides” the iterates through areas in which nonconvexity is a concern. Global convergence of the resulting algorithm is established

    A second derivative SQP method: local convergence

    Get PDF
    In [19], we gave global convergence results for a second-derivative SQP method for minimizing the exact ℓ1-merit function for a fixed value of the penalty parameter. To establish this result, we used the properties of the so-called Cauchy step, which was itself computed from the so-called predictor step. In addition, we allowed for the computation of a variety of (optional) SQP steps that were intended to improve the efficiency of the algorithm. \ud \ud Although we established global convergence of the algorithm, we did not discuss certain aspects that are critical when developing software capable of solving general optimization problems. In particular, we must have strategies for updating the penalty parameter and better techniques for defining the positive-definite matrix Bk used in computing the predictor step. In this paper we address both of these issues. We consider two techniques for defining the positive-definite matrix Bk—a simple diagonal approximation and a more sophisticated limited-memory BFGS update. We also analyze a strategy for updating the penalty paramter based on approximately minimizing the ℓ1-penalty function over a sequence of increasing values of the penalty parameter.\ud \ud Algorithms based on exact penalty functions have certain desirable properties. To be practical, however, these algorithms must be guaranteed to avoid the so-called Maratos effect. We show that a nonmonotone varient of our algorithm avoids this phenomenon and, therefore, results in asymptotically superlinear local convergence; this is verified by preliminary numerical results on the Hock and Shittkowski test set

    Enhancing structure relaxations for first-principles codes: an approximate Hessian approach

    Get PDF
    We present a method for improving the speed of geometry relaxation by using a harmonic approximation for the interaction potential between nearest neighbor atoms to construct an initial Hessian estimate. The model is quite robust, and yields approximately a 30% or better reduction in the number of calculations compared to an optimized diagonal initialization. Convergence with this initializer approaches the speed of a converged BFGS Hessian, therefore it is close to the best that can be achieved. Hessian preconditioning is discussed, and it is found that a compromise between an average condition number and a narrow distribution in eigenvalues produces the best optimization.Comment: 9 pages, 3 figures, added references, expanded optimization sectio

    Stochastic Trust Region Methods with Trust Region Radius Depending on Probabilistic Models

    Full text link
    We present a stochastic trust-region model-based framework in which its radius is related to the probabilistic models. Especially, we propose a specific algorithm, termed STRME, in which the trust-region radius depends linearly on the latest model gradient. The complexity of STRME method in non-convex, convex and strongly convex settings has all been analyzed, which matches the existing algorithms based on probabilistic properties. In addition, several numerical experiments are carried out to reveal the benefits of the proposed methods compared to the existing stochastic trust-region methods and other relevant stochastic gradient methods
    • …
    corecore