42,909 research outputs found

    Fast Generation of Random Spanning Trees and the Effective Resistance Metric

    Full text link
    We present a new algorithm for generating a uniformly random spanning tree in an undirected graph. Our algorithm samples such a tree in expected O~(m4/3)\tilde{O}(m^{4/3}) time. This improves over the best previously known bound of min(O~(mn),O(nω))\min(\tilde{O}(m\sqrt{n}),O(n^{\omega})) -- that follows from the work of Kelner and M\k{a}dry [FOCS'09] and of Colbourn et al. [J. Algorithms'96] -- whenever the input graph is sufficiently sparse. At a high level, our result stems from carefully exploiting the interplay of random spanning trees, random walks, and the notion of effective resistance, as well as from devising a way to algorithmically relate these concepts to the combinatorial structure of the graph. This involves, in particular, establishing a new connection between the effective resistance metric and the cut structure of the underlying graph

    Near-Minimal Spanning Trees: a Scaling Exponent in Probability Models

    Get PDF
    We study the relation between the minimal spanning tree (MST) on many random points and the "near-minimal" tree which is optimal subject to the constraint that a proportion δ\delta of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as 1+Θ(δ2)1 + \Theta(\delta^2). We prove this scaling result in the model of the lattice with random edge-lengths and in the Euclidean model.Comment: 24 pages, 3 figure

    Eight-Fifth Approximation for TSP Paths

    Full text link
    We prove the approximation ratio 8/5 for the metric {s,t}\{s,t\}-path-TSP problem, and more generally for shortest connected TT-joins. The algorithm that achieves this ratio is the simple "Best of Many" version of Christofides' algorithm (1976), suggested by An, Kleinberg and Shmoys (2012), which consists in determining the best Christofides {s,t}\{s,t\}-tour out of those constructed from a family \Fscr_{>0} of trees having a convex combination dominated by an optimal solution xx^* of the fractional relaxation. They give the approximation guarantee 5+12\frac{\sqrt{5}+1}{2} for such an {s,t}\{s,t\}-tour, which is the first improvement after the 5/3 guarantee of Hoogeveen's Christofides type algorithm (1991). Cheriyan, Friggstad and Gao (2012) extended this result to a 13/8-approximation of shortest connected TT-joins, for T4|T|\ge 4. The ratio 8/5 is proved by simplifying and improving the approach of An, Kleinberg and Shmoys that consists in completing x/2x^*/2 in order to dominate the cost of "parity correction" for spanning trees. We partition the edge-set of each spanning tree in \Fscr_{>0} into an {s,t}\{s,t\}-path (or more generally, into a TT-join) and its complement, which induces a decomposition of xx^*. This decomposition can be refined and then efficiently used to complete x/2x^*/2 without using linear programming or particular properties of TT, but by adding to each cut deficient for x/2x^*/2 an individually tailored explicitly given vector, inherent in xx^*. A simple example shows that the Best of Many Christofides algorithm may not find a shorter {s,t}\{s,t\}-tour than 3/2 times the incidentally common optima of the problem and of its fractional relaxation.Comment: 15 pages, corrected typos in citations, minor change

    An Analytical and Numerical Study of Optimal Channel Networks

    Full text link
    We analyze the Optimal Channel Network model for river networks using both analytical and numerical approaches. This is a lattice model in which a functional describing the dissipated energy is introduced and minimized in order to find the optimal configurations. The fractal character of river networks is reflected in the power law behaviour of various quantities characterising the morphology of the basin. In the context of a finite size scaling Ansatz, the exponents describing the power law behaviour are calculated exactly and show mean field behaviour, except for two limiting values of a parameter characterizing the dissipated energy, for which the system belongs to different universality classes. Two modified versions of the model, incorporating quenched disorder are considered: the first simulates heterogeneities in the local properties of the soil, the second considers the effects of a non-uniform rainfall. In the region of mean field behaviour, the model is shown to be robust to both kinds of perturbations. In the two limiting cases the random rainfall is still irrelevant, whereas the heterogeneity in the soil properties leads to new universality classes. Results of a numerical analysis of the model are reported that confirm and complement the theoretical analysis of the global minimum. The statistics of the local minima are found to more strongly resemble observational data on real rivers.Comment: 27 pages, ps-file, 11 Postscript figure
    corecore