144 research outputs found

    Abstract Learning Frameworks for Synthesis

    Full text link
    We develop abstract learning frameworks (ALFs) for synthesis that embody the principles of CEGIS (counter-example based inductive synthesis) strategies that have become widely applicable in recent years. Our framework defines a general abstract framework of iterative learning, based on a hypothesis space that captures the synthesized objects, a sample space that forms the space on which induction is performed, and a concept space that abstractly defines the semantics of the learning process. We show that a variety of synthesis algorithms in current literature can be embedded in this general framework. While studying these embeddings, we also generalize some of the synthesis problems these instances are of, resulting in new ways of looking at synthesis problems using learning. We also investigate convergence issues for the general framework, and exhibit three recipes for convergence in finite time. The first two recipes generalize current techniques for convergence used by existing synthesis engines. The third technique is a more involved technique of which we know of no existing instantiation, and we instantiate it to concrete synthesis problems

    Bounds in Query Learning

    Full text link
    We introduce new combinatorial quantities for concept classes, and prove lower and upper bounds for learning complexity in several models of query learning in terms of various combinatorial quantities. Our approach is flexible and powerful enough to enough to give new and very short proofs of the efficient learnability of several prominent examples (e.g. regular languages and regular ω\omega-languages), in some cases also producing new bounds on the number of queries. In the setting of equivalence plus membership queries, we give an algorithm which learns a class in polynomially many queries whenever any such algorithm exists. We also study equivalence query learning in a randomized model, producing new bounds on the expected number of queries required to learn an arbitrary concept. Many of the techniques and notions of dimension draw inspiration from or are related to notions from model theory, and these connections are explained. We also use techniques from query learning to mildly improve a result of Laskowski regarding compression schemes

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782
    • …
    corecore