8,842 research outputs found

    The formal power of one-visit attribute grammars

    Get PDF
    An attribute grammar is one-visit if the attributes can be evaluated by walking through the derivation tree in such a way that each subtree is visited at most once. One-visit (1V) attribute grammars are compared with one-pass left-to-right (L) attribute grammars and with attribute grammars having only one synthesized attribute (1S).\ud \ud Every 1S attribute grammar can be made one-visit. One-visit attribute grammars are simply permutations of L attribute grammars; thus the classes of output sets of 1V and L attribute grammars coincide, and similarly for 1S and L-1S attribute grammars. In case all attribute values are trees, the translation realized by a 1V attribute grammar is the composition of the translation realized by a 1S attribute grammar with a deterministic top-down tree transduction, and vice versa; thus, using a result of Duske e.a., the class of output languages of 1V (or L) attribute grammars is the image of the class of IO macro tree languages under all deterministic top-down tree transductions

    Interpretation and reduction of attribute grammars

    Get PDF
    An attribute grammar (AG) is in reduced form if in all its derivation trees every attribute contributes to the translation. We prove that, eventhough AG are generally not in reduced form, they can be reduced, i.e., put into reduced form, without modifying their translations. This is shown first for noncircular AG and then for arbitrary AG. In both cases the reduction consists of easy (almost syntactic) transformations which do not change the semantic domain of the AG. These easy transformations are formalized by introducing the notion of AG interpretation as an extension to AG of the concept of context-free grammar form. Finally we prove that any general algorithm for reducing even the simple class of L-AG needs exponential time (in the size of the input AG) infinitely often

    Fast and Tiny Structural Self-Indexes for XML

    Full text link
    XML document markup is highly repetitive and therefore well compressible using dictionary-based methods such as DAGs or grammars. In the context of selectivity estimation, grammar-compressed trees were used before as synopsis for structural XPath queries. Here a fully-fledged index over such grammars is presented. The index allows to execute arbitrary tree algorithms with a slow-down that is comparable to the space improvement. More interestingly, certain algorithms execute much faster over the index (because no decompression occurs). E.g., for structural XPath count queries, evaluating over the index is faster than previous XPath implementations, often by two orders of magnitude. The index also allows to serialize XML results (including texts) faster than previous systems, by a factor of ca. 2-3. This is due to efficient copy handling of grammar repetitions, and because materialization is totally avoided. In order to compare with twig join implementations, we implemented a materializer which writes out pre-order numbers of result nodes, and show its competitiveness.Comment: 13 page

    SAGA: A project to automate the management of software production systems

    Get PDF
    The project to automate the management of software production systems is described. The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. Several major components of the SAGA system are completed to prototype form. The construction methods are described

    Simple multi-visit attribute grammars

    Get PDF
    An attribute grammar is simple multi-visit if each attribute of a nonterminal has a fixed visit-number associated with it such that, during attribute evaluation, the attributes of a node which have visit-number j are computed at the jth visit to the node. An attribute grammar is l-ordered if for each nonterminal a linear order of its attributes exists such that the attributes of a node can always be evaluated in that order (cf. the work of Kastens).\ud \ud An attribute grammar is simple multi-visit if and only if it is l-ordered. Every noncircular attribute grammar can be transformed into an equivalent simple multi-visit attribute grammar which uses the same semantic operations.\ud \ud For a given distribution of visit-numbers over the attributes, it can be decided in polynomial time whether the attributes can be evaluated according to these visit-numbers. The problem whether an attribute grammar is simple multi-visit is NP-complete

    From treebank resources to LFG F-structures

    Get PDF
    We present two methods for automatically annotating treebank resources with functional structures. Both methods define systematic patterns of correspondence between partial PS configurations and functional structures. These are applied to PS rules extracted from treebanks, or directly to constraint set encodings of treebank PS trees

    Structure preserving transformations on non-left-recursive grammars

    Get PDF
    We will be concerned with grammar covers, The first part of this paper presents a general framework for covers. The second part introduces a transformation from nonleft-recursive grammars to grammars in Greibach normal form. An investigation of the structure preserving properties of this transformation, which serves also as an illustration of our framework for covers, is presented
    corecore