4,624 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    On small Mixed Pattern Ramsey numbers

    Full text link
    We call the minimum order of any complete graph so that for any coloring of the edges by kk colors it is impossible to avoid a monochromatic or rainbow triangle, a Mixed Ramsey number. For any graph HH with edges colored from the above set of kk colors, if we consider the condition of excluding HH in the above definition, we produce a \emph{Mixed Pattern Ramsey number}, denoted Mk(H)M_k(H). We determine this function in terms of kk for all colored 44-cycles and all colored 44-cliques. We also find bounds for Mk(H)M_k(H) when HH is a monochromatic odd cycles, or a star for sufficiently large kk. We state several open questions.Comment: 16 page

    Cycles are strongly Ramsey-unsaturated

    Full text link
    We call a graph H Ramsey-unsaturated if there is an edge in the complement of H such that the Ramsey number r(H) of H does not change upon adding it to H. This notion was introduced by Balister, Lehel and Schelp who also proved that cycles (except for C4C_4) are Ramsey-unsaturated, and conjectured that, moreover, one may add any chord without changing the Ramsey number of the cycle CnC_n, unless n is even and adding the chord creates an odd cycle. We prove this conjecture for large cycles by showing a stronger statement: If a graph H is obtained by adding a linear number of chords to a cycle CnC_n, then r(H)=r(Cn)r(H)=r(C_n), as long as the maximum degree of H is bounded, H is either bipartite (for even n) or almost bipartite (for odd n), and n is large. This motivates us to call cycles strongly Ramsey-unsaturated. Our proof uses the regularity method

    On path-quasar Ramsey numbers

    Get PDF
    Let G1G_1 and G2G_2 be two given graphs. The Ramsey number R(G1,G2)R(G_1,G_2) is the least integer rr such that for every graph GG on rr vertices, either GG contains a G1G_1 or G‾\overline{G} contains a G2G_2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m)R(P_n,K_{1,m}), where PnP_n is a path on nn vertices and K1,mK_{1,m} is a star on m+1m+1 vertices. In this note, we first give an explicit formula for the path-star Ramsey numbers. Secondly, we study the Ramsey numbers R(Pn,K1∨Fm)R(P_n,K_1\vee F_m), where FmF_m is a linear forest on mm vertices. We determine the exact values of R(Pn,K1∨Fm)R(P_n,K_1\vee F_m) for the cases m≤nm\leq n and m≥2nm\geq 2n, and for the case that FmF_m has no odd component. Moreover, we give a lower bound and an upper bound for the case n+1≤m≤2n−1n+1\leq m\leq 2n-1 and FmF_m has at least one odd component.Comment: 7 page
    • …
    corecore