18,744 research outputs found

    On Fuzzy Concepts

    Get PDF
    In this paper we try to combine two approaches. One is the theory of knowledge graphs in which concepts are represented by graphs. The other is the axiomatic theory of fuzzy sets (AFS). The discussion will focus on the idea of fuzzy concept. It will be argued that the fuzziness of a concept in natural language is mainly due to the difference in interpretation that people give to a certain word. As different interpretations lead to different knowledge graphs, the notion of fuzzy concept should be describable in terms of sets of graphs. This leads to a natural introduction of membership values for elements of graphs. Using these membership values we apply AFS theory as well as an alternative approach to calculate fuzzy decision trees, that can be used to determine the most relevant elements of a concept

    Micro-Macro Analysis of Complex Networks

    Get PDF
    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a \u201cclassic\u201d approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (\u201cmicro\u201d) to a different scale level (\u201cmacro\u201d), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability

    Imprint of quantum gravity in the dimension and fabric of spacetime

    Full text link
    We here conjecture that two much-studied aspects of quantum gravity, dimensional flow and spacetime fuzziness, might be deeply connected. We illustrate the mechanism, providing first evidence in support of our conjecture, by working within the framework of multifractional theories, whose key assumption is an anomalous scaling of the spacetime dimension in the ultraviolet and a slow change of the dimension in the infrared. This sole ingredient is enough to produce a scale-dependent deformation of the integration measure with also a fuzzy spacetime structure. We also compare the multifractional correction to lengths with the types of Planckian uncertainty for distance and time measurements that was reported in studies combining quantum mechanics and general relativity heuristically. This allows us to fix two free parameters of the theory and leads, in one of the scenarios we contemplate, to a value of the ultraviolet dimension which had already found support in other quantum-gravity analyses. We also formalize a picture such that fuzziness originates from a fundamental discrete scale invariance at short scales and corresponds to a stochastic spacetime geometry.Comment: 6 pages; v2: phenomenology section adde

    Quantum Mechanics as a Framework for Dealing with Uncertainty

    Full text link
    Quantum uncertainty is described here in two guises: indeterminacy with its concomitant indeterminism of measurement outcomes, and fuzziness, or unsharpness. Both features were long seen as obstructions of experimental possibilities that were available in the realm of classical physics. The birth of quantum information science was due to the realization that such obstructions can be turned into powerful resources. Here we review how the utilization of quantum fuzziness makes room for a notion of approximate joint measurement of noncommuting observables. We also show how from a classical perspective quantum uncertainty is due to a limitation of measurability reflected in a fuzzy event structure -- all quantum events are fundamentally unsharp.Comment: Plenary Lecture, Central European Workshop on Quantum Optics, Turku 2009

    Continuous Fuzzy Measurement of Energy for a Two-Level System

    Full text link
    A continuous measurement of energy which is sharp (perfect) leads to the quantum Zeno effect (freezing of the state). Only if the quantum measurement is fuzzy, continuous monitoring gives a readout E(t) from which information about the dynamical development of the state vector of the system may be obtained in certain cases. This is studied in detail. Fuzziness is thereby introduced with the help of restricted path integrals equivalent to non-Hermitian Hamiltonians. For an otherwise undisturbed multilevel system it is shown that this measurement represents a model of decoherence. If it lasts long enough, the measurement readout discriminates between the energy levels and the von Neumann state reduction is obtained. For a two-level system under resonance influence (which undergoes in absence of measurement Rabi oscillations between the levels) different regimes of measurement are specified depending on its duration and fuzziness: 1) the Zeno regime where the measurement results in a freezing of the transitions between the levels and 2) the Rabi regime when the transitions maintain. It is shown that in the Rabi regime at the border to the Zeno regime a correlation exists between the time dependent measurement readout and the modified Rabi oscillations of the state of the measured system. Possible realizations of continuous fuzzy measurements of energy are sketched.Comment: 29 pages in LATEX, 1 figure in EPS, to be published in Physical Review

    Hausdorff dimension of a quantum string

    Full text link
    In the path integral formulation of quantum mechanics, Feynman and Hibbs noted that the trajectory of a particle is continuous but nowhere differentiable. We extend this result to the quantum mechanical path of a relativistic string and find that the ``trajectory'', in this case, is a fractal surface with Hausdorff dimension three. Depending on the resolution of the detecting apparatus, the extra dimension is perceived as ``fuzziness'' of the string world-surface. We give an interpretation of this phenomenon in terms of a new form of the uncertainty principle for strings, and study the transition from the smooth to the fractal phase.Comment: 18 pages, non figures, ReVTeX 3.0, in print on Phys.Rev.
    corecore