4,887 research outputs found

    Four dimensional Lie symmetry algebras and fourth order ordinary differential equations

    Full text link
    Realizations of four dimensional Lie algebras as vector fields in the plane are explicitly constructed. Fourth order ordinary differential equations which admit such Lie symmetry algebras are derived. The route to their integration is described.Comment: 12 page

    Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Full text link
    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2,R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Realizations of Real Low-Dimensional Lie Algebras

    Full text link
    Using a new powerful technique based on the notion of megaideal, we construct a complete set of inequivalent realizations of real Lie algebras of dimension no greater than four in vector fields on a space of an arbitrary (finite) number of variables. Our classification amends and essentially generalizes earlier works on the subject. Known results on classification of low-dimensional real Lie algebras, their automorphisms, differentiations, ideals, subalgebras and realizations are reviewed.Comment: LaTeX2e, 39 pages. Essentially exetended version. Misprints in Appendix are correcte

    Notes on Lie symmetry group methods for differential equations

    Full text link
    Fundamentals on Lie group methods and applications to differential equations are surveyed. Many examples are included to elucidate their extensive applicability for analytically solving both ordinary and partial differential equations.Comment: 85 Pages. expanded and misprints correcte

    The algebraic structure of geometric flows in two dimensions

    Full text link
    There is a common description of different intrinsic geometric flows in two dimensions using Toda field equations associated to continual Lie algebras that incorporate the deformation variable t into their system. The Ricci flow admits zero curvature formulation in terms of an infinite dimensional algebra with Cartan operator d/dt. Likewise, the Calabi flow arises as Toda field equation associated to a supercontinual algebra with odd Cartan operator d/d \theta - \theta d/dt. Thus, taking the square root of the Cartan operator allows to connect the two distinct classes of geometric deformations of second and fourth order, respectively. The algebra is also used to construct formal solutions of the Calabi flow in terms of free fields by Backlund transformations, as for the Ricci flow. Some applications of the present framework to the general class of Robinson-Trautman metrics that describe spherical gravitational radiation in vacuum in four space-time dimensions are also discussed. Further iteration of the algorithm allows to construct an infinite hierarchy of higher order geometric flows, which are integrable in two dimensions and they admit immediate generalization to Kahler manifolds in all dimensions. These flows provide examples of more general deformations introduced by Calabi that preserve the Kahler class and minimize the quadratic curvature functional for extremal metrics.Comment: 54 page

    Symmetry Properties of Autonomous Integrating Factors

    Full text link
    We study the symmetry properties of autonomous integrating factors from an algebraic point of view. The symmetries are delineated for the resulting integrals treated as equations and symmetries of the integrals treated as functions or configurational invariants. The succession of terms (pattern) is noted. The general pattern for the solution symmetries for equations in the simplest form of maximal order is given and the properties of the associated integrals resulting from this analysis are given.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA
    • …
    corecore