95 research outputs found

    A Matrix Hyperbolic Cosine Algorithm and Applications

    Full text link
    In this paper, we generalize Spencer's hyperbolic cosine algorithm to the matrix-valued setting. We apply the proposed algorithm to several problems by analyzing its computational efficiency under two special cases of matrices; one in which the matrices have a group structure and an other in which they have rank-one. As an application of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size nn, it constructs an expanding Cayley graph of logarithmic degree in near-optimal O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices, which implies an improved deterministic algorithm for spectral graph sparsification of dense graphs. In addition, we give an elementary connection between spectral sparsification of positive semi-definite matrices and element-wise matrix sparsification. As a consequence, we obtain improved element-wise sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work in (current) Section

    Improved Practical Matrix Sketching with Guarantees

    Full text link
    Matrices have become essential data representations for many large-scale problems in data analytics, and hence matrix sketching is a critical task. Although much research has focused on improving the error/size tradeoff under various sketching paradigms, the many forms of error bounds make these approaches hard to compare in theory and in practice. This paper attempts to categorize and compare most known methods under row-wise streaming updates with provable guarantees, and then to tweak some of these methods to gain practical improvements while retaining guarantees. For instance, we observe that a simple heuristic iSVD, with no guarantees, tends to outperform all known approaches in terms of size/error trade-off. We modify the best performing method with guarantees FrequentDirections under the size/error trade-off to match the performance of iSVD and retain its guarantees. We also demonstrate some adversarial datasets where iSVD performs quite poorly. In comparing techniques in the time/error trade-off, techniques based on hashing or sampling tend to perform better. In this setting we modify the most studied sampling regime to retain error guarantee but obtain dramatic improvements in the time/error trade-off. Finally, we provide easy replication of our studies on APT, a new testbed which makes available not only code and datasets, but also a computing platform with fixed environmental settings.Comment: 27 page

    Low Rank Matrix-Valued Chernoff Bounds and Approximate Matrix Multiplication

    Full text link
    In this paper we develop algorithms for approximating matrix multiplication with respect to the spectral norm. Let A\in{\RR^{n\times m}} and B\in\RR^{n \times p} be two matrices and \eps>0. We approximate the product A^\top B using two down-sampled sketches, \tilde{A}\in\RR^{t\times m} and \tilde{B}\in\RR^{t\times p}, where t\ll n such that \norm{\tilde{A}^\top \tilde{B} - A^\top B} \leq \eps \norm{A}\norm{B} with high probability. We use two different sampling procedures for constructing \tilde{A} and \tilde{B}; one of them is done by i.i.d. non-uniform sampling rows from A and B and the other is done by taking random linear combinations of their rows. We prove bounds that depend only on the intrinsic dimensionality of A and B, that is their rank and their stable rank; namely the squared ratio between their Frobenius and operator norm. For achieving bounds that depend on rank we employ standard tools from high-dimensional geometry such as concentration of measure arguments combined with elaborate \eps-net constructions. For bounds that depend on the smaller parameter of stable rank this technology itself seems weak. However, we show that in combination with a simple truncation argument is amenable to provide such bounds. To handle similar bounds for row sampling, we develop a novel matrix-valued Chernoff bound inequality which we call low rank matrix-valued Chernoff bound. Thanks to this inequality, we are able to give bounds that depend only on the stable rank of the input matrices...Comment: 15 pages, To appear in 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2011

    Pipage Rounding, Pessimistic Estimators and Matrix Concentration

    Get PDF
    Pipage rounding is a dependent random sampling technique that has several interesting properties and diverse applications. One property that has been particularly useful is negative correlation of the resulting vector. Unfortunately negative correlation has its limitations, and there are some further desirable properties that do not seem to follow from existing techniques. In particular, recent concentration results for sums of independent random matrices are not known to extend to a negatively dependent setting. We introduce a simple but useful technique called concavity of pessimistic estimators. This technique allows us to show concentration of submodular functions and conc

    Spectral Sparsification via Bounded-Independence Sampling

    Get PDF
    We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph GG on nn vertices described by a binary string of length NN, an integer klognk\leq \log n, and an error parameter ϵ>0\epsilon > 0, our algorithm runs in space O~(klog(Nwmax/wmin))\tilde{O}(k\log (N\cdot w_{\mathrm{max}}/w_{\mathrm{min}})) where wmaxw_{\mathrm{max}} and wminw_{\mathrm{min}} are the maximum and minimum edge weights in GG, and produces a weighted graph HH with O~(n1+2/k/ϵ2)\tilde{O}(n^{1+2/k}/\epsilon^2) edges that spectrally approximates GG, in the sense of Spielmen and Teng [ST04], up to an error of ϵ\epsilon. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava's effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by kk above, and the resulting sparsity that can be achieved.Comment: 37 page

    On Weighted Graph Sparsification by Linear Sketching

    Full text link
    A seminal work of [Ahn-Guha-McGregor, PODS'12] showed that one can compute a cut sparsifier of an unweighted undirected graph by taking a near-linear number of linear measurements on the graph. Subsequent works also studied computing other graph sparsifiers using linear sketching, and obtained near-linear upper bounds for spectral sparsifiers [Kapralov-Lee-Musco-Musco-Sidford, FOCS'14] and first non-trivial upper bounds for spanners [Filtser-Kapralov-Nouri, SODA'21]. All these linear sketching algorithms, however, only work on unweighted graphs. In this paper, we initiate the study of weighted graph sparsification by linear sketching by investigating a natural class of linear sketches that we call incidence sketches, in which each measurement is a linear combination of the weights of edges incident on a single vertex. Our results are: 1. Weighted cut sparsification: We give an algorithm that computes a (1+ϵ)(1 + \epsilon)-cut sparsifier using O~(nϵ3)\tilde{O}(n \epsilon^{-3}) linear measurements, which is nearly optimal. 2. Weighted spectral sparsification: We give an algorithm that computes a (1+ϵ)(1 + \epsilon)-spectral sparsifier using O~(n6/5ϵ4)\tilde{O}(n^{6/5} \epsilon^{-4}) linear measurements. Complementing our algorithm, we then prove a superlinear lower bound of Ω(n21/20o(1))\Omega(n^{21/20-o(1)}) measurements for computing some O(1)O(1)-spectral sparsifier using incidence sketches. 3. Weighted spanner computation: We focus on graphs whose largest/smallest edge weights differ by an O(1)O(1) factor, and prove that, for incidence sketches, the upper bounds obtained by~[Filtser-Kapralov-Nouri, SODA'21] are optimal up to an no(1)n^{o(1)} factor
    corecore