241 research outputs found

    Turing degrees of limit sets of cellular automata

    Full text link
    Cellular automata are discrete dynamical systems and a model of computation. The limit set of a cellular automaton consists of the configurations having an infinite sequence of preimages. It is well known that these always contain a computable point and that any non-trivial property on them is undecidable. We go one step further in this article by giving a full characterization of the sets of Turing degrees of cellular automata: they are the same as the sets of Turing degrees of effectively closed sets containing a computable point

    Parametric ordering of complex systems

    Get PDF
    Cellular automata (CA) dynamics are ordered in terms of two global parameters, computable {\sl a priori} from the description of rules. While one of them (activity) has been used before, the second one is new; it estimates the average sensitivity of rules to small configurational changes. For two well-known families of rules, the Wolfram complexity Classes cluster satisfactorily. The observed simultaneous occurrence of sharp and smooth transitions from ordered to disordered dynamics in CA can be explained with the two-parameter diagram

    On the dual post correspondence problem

    Get PDF
    The Dual Post Correspondence Problem asks whether, for a given word α, there exists a pair of distinct morphisms σ, τ, one of which needs to be non-periodic, such that σ(α) = τ(α) is satisfied. This problem is important for the research on equality sets, which are a vital concept in the theory of computation, as it helps to identify words that are in trivial equality sets only. Little is known about the Dual PCP for words α over larger than binary alphabets. In the present paper, we address this question in a way that simplifies the usual method, which means that we can reduce the intricacy of the word equations involved in dealing with the Dual PCP. Our approach yields large sets of words for which there exists a solution to the Dual PCP as well as examples of words over arbitrary alphabets for which such a solution does not exist

    On the dual post correspondence problem

    Get PDF
    The Dual Post Correspondence Problem asks whether, for a given word α, there exists a pair of distinct morphisms σ,τ, one of which needs to be non-periodic, such that σ(α) = τ(α) is satisfied. This problem is important for the research on equality sets, which are a vital concept in the theory of computation, as it helps to identify words that are in trivial equality sets only. Little is known about the Dual PCP for words α over larger than binary alphabets, especially for so-called ratio-primitive examples. In the present paper, we address this question in a way that simplifies the usual method, which means that we can reduce the intricacy of the word equations involved in dealing with the Dual PCP. Our approach yields large sets of words for which there exists a solution to the Dual PCP as well as examples of words over arbitrary alphabets for which such a solution does not exist

    Coarse-graining of cellular automata, emergence, and the predictability of complex systems

    Full text link
    We study the predictability of emergent phenomena in complex systems. Using nearest neighbor, one-dimensional Cellular Automata (CA) as an example, we show how to construct local coarse-grained descriptions of CA in all classes of Wolfram's classification. The resulting coarse-grained CA that we construct are capable of emulating the large-scale behavior of the original systems without accounting for small-scale details. Several CA that can be coarse-grained by this construction are known to be universal Turing machines; they can emulate any CA or other computing devices and are therefore undecidable. We thus show that because in practice one only seeks coarse-grained information, complex physical systems can be predictable and even decidable at some level of description. The renormalization group flows that we construct induce a hierarchy of CA rules. This hierarchy agrees well with apparent rule complexity and is therefore a good candidate for a complexity measure and a classification method. Finally we argue that the large scale dynamics of CA can be very simple, at least when measured by the Kolmogorov complexity of the large scale update rule, and moreover exhibits a novel scaling law. We show that because of this large-scale simplicity, the probability of finding a coarse-grained description of CA approaches unity as one goes to increasingly coarser scales. We interpret this large scale simplicity as a pattern formation mechanism in which large scale patterns are forced upon the system by the simplicity of the rules that govern the large scale dynamics.Comment: 18 pages, 9 figure

    Master index volumes 31–40

    Get PDF

    Generating all permutations by context-free grammars in Chomsky normal form

    Get PDF
    Let Ln be the finite language of all n! strings that are permutations of n different symbols (n1). We consider context-free grammars Gn in Chomsky normal form that generate Ln. In particular we study a few families {Gn}n1, satisfying L(Gn)=Ln for n1, with respect to their descriptional complexity, i.e. we determine the number of nonterminal symbols and the number of production rules of Gn as functions of n
    corecore