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The Dual Post Correspondence Problem asks whether, for a given word α, there exists

a pair of distinct morphisms σ, τ , one of which needs to be non-periodic, such that
σ(α) = τ(α) is satisfied. This problem is important for the research on equality sets,
which are a vital concept in the theory of computation, as it helps to identify words that

are in trivial equality sets only.
Little is known about the Dual PCP for words α over larger than binary alphabets,

especially for so-called ratio-primitive examples. In the present paper, we address this

question in a way that simplifies the usual method, which means that we can reduce the
intricacy of the word equations involved in dealing with the Dual PCP. Our approach

yields large sets of words for which there exists a solution to the Dual PCP as well as

examples of words over arbitrary alphabets for which such a solution does not exist.

Keywords: Morphisms; Equality sets; Dual Post Correspondence Problem; Periodicity

forcing sets; Word equations; Ambiguity of morphisms

1. Introduction

The equality set E(σ, τ) of two morphisms σ, τ is the set of all words α that satisfy

σ(α) = τ(α). Introduced by A. Salomaa [16] and Engelfriet and Rozenberg [6], they
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can be used to characterise crucial concepts in the theory of computation, such

as the recursively enumerable set (see Culik II [1]) and the complexity classes P

and NP (see Mateescu et al. [13]). Furthermore, since the famous undecidable Post

Correspondence Problem (PCP) by Post [14] asks whether, for given morphisms σ, τ ,

there exists a word α satisfying σ(α) = τ(α), it is simply the emptiness problem

for equality sets.

Culik II and Karhumäki [2] study an alternative problem for equality sets, called

the Dual Post Correspondence Problem (Dual PCP or DPCP for short): they ask

whether, for any given word α, there exist a pair of distinct morphisms σ, τ (called a

solution to the DPCP) such that σ(α) = τ(α). Note that, in order for this problem

to lead to a rich theory, at least one of the morphisms needs to be non-periodic. If

a word does not have such a pair of morphisms, then it is called periodicity forcing,

since the only solutions to the corresponding instance of the DPCP are periodic.

The Dual PCP is of particular interest for the research on equality sets as it

identifies those words which belong to some non-trivial equality set (i.e., where at

least one of the morphisms is periodic), and those which do not. The existence of

the later words (namely the periodicity forcing ones) is a rather peculiar property

of equality sets when compared to other types of formal languages, and it illustrates

their combinatorial intricacy. In addition, the DPCP shows close connections to a

special type of word equations, since a word α has a solution to the DPCP if and

only if there exists a non-periodic solution to the word equation α = α′, where α′ is

renaming of α. A further related concept is the ambiguity of morphisms (see, e. g.,

Freydenberger et al. [8, 7], Schneider [17]), since a word does not have a solution to

the DPCP if and only if every non-periodic morphism is unambiguous for it.

Previous research on the DPCP has established its decidability and numerous

insights into words over binary alphabets that do or do not have a solution. In

contrast to this, there has been no work explicitly considering the case of larger

alphabets, for which very little is known. The focus of the present paper is therefore

to study the DPCP for words over arbitrarily large alphabets. Our main results,

firstly, establish an approach to the problem that reduces the complexity of the

word equations involved, secondly provide large classes of patterns (such as the

morphically imprimitive ones [15]) that satisfy the DPCP, and, finally, show that

the Dual PCP is non-trivial in the general case.

2. Definitions and Basic Observations

Let N := {1, 2, . . .} be the set of natural numbers, and let N0 := N ∪ {0}. We often

use N as an infinite alphabet of symbols. In order to distinguish between a word

over N and a word over a (possibly finite) alphabet Σ, we call the former a pattern.

Given a pattern α ∈ N∗, we call symbols occurring in α variables and denote the

set of variables in α by var(α). Hence, var(α) ⊆ N. We use the symbol · to separate

the variables in a pattern, so that, for instance, 1 · 1 · 2 is not confused with 11 · 2.

For a set X, the notation |X| refers to the cardinality of X, and for a word X, |X|
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stands for the length of X. By |α|x, we denote the number of occurrences of the

variable x in the pattern α. Let α ∈ {1, 2, . . . , n}∗ be a pattern. The Parikh vector

of α, denoted by P(α), is the vector (|α|1, |α|2, . . . , |α|n).

Given arbitrary alphabets A,B, a morphism is a mapping h : A∗ → B∗ that

is compatible with the concatenation, i. e., for all v, w ∈ A∗, h(vw) = h(v)h(w).

Hence, h is fully defined for all v ∈ A∗ as soon as it is defined for all symbols in

A. Such a morphism h is called periodic if and only if there exists a v ∈ B∗ such

that h(a) ∈ v∗ for every a ∈ A. The morphisms g, h : A∗ → B∗ are distinct if and

only if there exists an a ∈ A such that g(a) 6= h(a). For the composition of two

morphisms g, h : A∗ → A∗, we write g◦h, i. e., for every w ∈ A∗, g◦h(w) = g(h(w)).

Thus we have the following simple observations, which, to aid the exposition, are

included formally. For alphabets A, B, let f : A∗ → B∗ and g, h : B∗ → {a, b}∗ be

morphisms. Then:

(Fact 1) the morphism g ◦ f is periodic if and only if there exists a (primitive [12])

word w ∈ {a, b}∗ such that for each a ∈ A, there exists an n ∈ N0 with

g(f(a)) = wn, and

(Fact 2) the morphisms g ◦ f and h ◦ f are distinct if and only if there exists an

a ∈ A such that g(f(a)) 6= h(f(a)).

In this paper, we usually consider morphisms σ : N∗ → {a, b}∗ and morphisms

ϕ : N∗ → N∗. For a set N ⊆ N, the morphism πN : N∗ → N∗ is defined by

πN (x) := x if x ∈ N and πN (x) := ε if x 6∈ N . Thus, for a pattern α ∈ N+, πN (α)

is the projection of α to its subpattern πN (α) consisting of variables in N only.

Let α ∈ N+. We call α morphically imprimitive if and only if there exist a

pattern β with |β| < |α| and morphisms ϕ,ψ : N∗ → N∗ satisfying ϕ(α) = β and

ψ(β) = α. If α is not morphically imprimitive, we call α morphically primitive.

As demonstrated by Reidenbach and Schneider [15], the partition of the set of all

patterns into morphically primitive and morphically imprimitive ones is vital in

several branches of combinatorics on words and formal language theory, and some

of our results in the main part of the present paper shall again be based on this

notion. It is convenient to formally define the Dual PCP as a set:

Definition 1. Let Σ be an alphabet. DPCP is the set of all α ∈ N+ such that

there exist a non-periodic morphism σ : N∗ → Σ∗ and an (arbitrary) morphism

τ : N∗ → Σ∗ satisfying σ(α) = τ(α) and σ(x) 6= τ(x) for an x ∈ var(α).

Since all morphisms with unary target alphabets are periodic and since we can

encode any Σ, |Σ| ≥ 2, over a binary alphabet, we only consider Σ := {a, b}. The

following proposition explains why in the definition of DPCP at least one morphism

must be non-periodic.

Proposition 2. For every α ∈ N+ with | var(α)| ≥ 2, there exist distinct (periodic)

morphisms σ, τ : N∗ → {a, b}∗ satisfying σ(α) = τ(α).
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Proof. W. l. o. g., let var(α) ⊇ {1, 2}. Let k := |α|1, l := |α|2. Let the morphism

σ : N∗ → {a, b}∗ be defined by σ(1) := al and σ(x) := ε for every variable x 6= 1.

Similarly, let the morphism τ : N∗ → {a, b}∗ be defined by τ(2) := ak and τ(x) := ε

for every variable x 6= 2. Thus, σ(α) = (al)k = alk = (ak)l = τ(α).

Hence, allowing periodic morphisms would turn the Dual PCP into a trivial

problem. Note also that for patterns α with | var(α)| = 1, every morphism is unam-

biguous so all unary patterns are periodicity forcing.

The Dual PCP can be extended to sets of patterns in a natural way: let β1,

β2, ..., βn ∈ N∗ be patterns, and let ∆ := var(β1) ∪ var(β2) ∪ · · · ∪ var(βn). The

set {β1, β2, ..., βn} is periodicity forcing if, for every pair of distinct morphisms σ,

τ : ∆∗ → {a, b}∗ which agree on every βi for 1 ≤ i ≤ n, σ and τ are periodic. The

strong relationship between periodicity forcing words and periodicity forcing sets is

immediately clear from the definitions, however this connection can be seen to be

even stronger when considering ratio-imprimitive patterns.

In [2], ratio-imprimitivity is defined for binary patterns as follows: a pattern

α ∈ {1, 2}+ is called ratio-primitive if and only if, for every proper prefix β of α,

it is |β|1/|β|2 6= |α|1/|α|2. Otherwise, α is called ratio-imprimitive. We extend this

definition to arbitrarily large alphabets by considering the ratio of occurrences of

all variables in the prefix β: a pattern α ∈ N+ is ratio-primitive if and only if,

for every proper prefix β of α, there does not exist a rational number k such that

kP(β) = P(α).

The significance of this definition is that if α = β · γ, where for some k, P(α) =

kP(β), then for any two morphisms σ, τ , the equality σ(α) = τ(α) holds if and

only if σ(β) = τ(β) and σ(γ) = τ(γ). Therefore, for ratio-imprimitive patterns,

periodicity forcing words are equivalent to non-unary periodicity forcing sets. It is

often the ‘truly unary’ examples – the ratio-primitive words, which are the most

challenging to classify when considering the Dual PCP – and these are therefore

given particular attention.

From Culik II and Karhumäki [2] it is known that DPCP is decidable. From

the literature on word equations and binary equality sets, it can be inferred that

for any i, j ∈ N, we have that (1 · 2)i · 1 ∈ DPCP [9], 1i · 2j ∈ DPCP [2] and

1 · 2i · 1 ∈ DPCP [11]. Note that, for i, j > 1, all these patterns are morphically

primitive. Thus, the results are not trivially achievable by applying Corollary 10 in

Section 4. Furthermore:

Proposition 3 ([2]) Every two-variable pattern of length 4 or less is in DPCP.

Every renaming and/or mirror image of the patterns 1 · 2 · 1 · 1 · 2, 1 · 2 · 1 · 2 · 2
is not in DPCP. These are the only patterns of length 5 that are not in DPCP. In

particular, the (morphically primitive) patterns 1 ·1 ·2 ·2 ·2, 1 ·2 ·1 ·2 ·1, 1 ·2 ·2 ·1 ·1
and 1 · 2 · 2 · 2 · 1 are in DPCP.

Proposition 4 ([3]) 12 · 23 · 12 /∈ DPCP.
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It is worth noting that the proof of the latter proposition takes about 9 pages.

This illustrates how difficult it can be to show that certain example patterns do

not belong to DPCP. In [2], Culik II and Karhumäki state without proof that any

ratio-primitive pattern α ∈ (13 · 1∗ · 23 · 2∗)2 is not in DPCP.

While the above examples are partly hard to find, some general statements on

DPCP and its complement can be obtained with little effort:

Proposition 5. The following statements hold for any α, β ∈ N+:

(1) Let k ∈ N. Then αk ∈ DPCP if and only if α ∈ DPCP.

(2) If var(α) ∩ var(β) = ∅, then αβ ∈ DPCP.

(3) Let | var(α)| = 1. Then α /∈ DPCP.

(4) Let V ⊆ var(α) with πV (α) ∈ DPCP. Then α ∈ DPCP.

Proof. Statements 1, 3, and 4 follow directly from the properties of morphisms.

Consider statement 2. If α and β are both unary, then the situation is covered

by the example 1i · 2j (see above). Otherwise, assume that | var(α1)| ≥ 2 (if not,

then | var(α2)| ≥ 2, and the proof is analogous). W. l. o. g., let var(α1) ⊇ {1, 2} and

3 ∈ var(α2). We choose the morphisms σ and τ from the proof of Proposition 2 and

define morphisms σ′, τ ′ : N∗ → {a, b}∗ by σ′(1) := σ(1), τ ′(1) := τ(1), σ′(2) := σ(2),

τ ′(2) := τ(2), σ′(3) := τ ′(3) := b and σ′(x) := τ ′(x) := ε for every x > 3. Clearly,

σ′ and τ ′ are non-periodic and distinct. Furthermore, σ′(α) = alk b|α|3 = τ ′(α) and,

thus, α ∈ DPCP.

It follows immediately from the first statement that there are patterns of ar-

bitrary length both in, and not in DPCP, and from the second statement, that

patterns exist in DPCP over arbitrarily large alphabets. The equivalent statement

for patterns not in DPCP is much harder to verify, and is addressed in Section 5.

It is also worth noting that by the last statement, the discovery of one pattern not

in DPCP directly leads to a multitude of patterns not in DPCP (namely, all of its

subpatterns). On the other hand, this situation makes it very difficult to find such

example patterns since arbitrary patterns easily contain subpatterns from DPCP.

3. A Characteristic Condition

The most direct way to decide on whether a pattern α is in DPCP is to solve the

word equation α = α′, where α′ is a renaming of α such that var(α) ∩ var(α′) = ∅.
Indeed, the set of solutions corresponds exactly to the set of all pairs of morphisms

which agree on α. The pattern α is in DPCP if and only if there exists such a

solution which is non-periodic. This explains why Culik II and Karhumäki [2] use

Makanin’s Algorithm for demonstrating the decidability of DPCP. Furthermore, it

demonstrates why, in many respects, the more challenging questions often concern

patterns not in DPCP. For such patterns, it is not enough to simply find a single

non-periodic solution, but instead every single solution to the equation α = α′ must

be accounted for. This is, in general, an extremely difficult and time consuming task.
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This section presents an alternative approach which attempts to reduce the

difficulties associated with such equations. To this end, we apply a morphism ϕ :

N∗ → N∗ to a pattern α /∈ DPCP, and we identify conditions that, if satisfied, yield

ϕ(α) /∈ DPCP. Our first main result characterises such morphisms ϕ:

Theorem 6. Let α ∈ N+ be a pattern not in DPCP, and let ϕ : var(α)∗ → N∗ be

a morphism. The pattern ϕ(α) is not in DPCP if and only if

(i) for every periodic morphism ρ : var(α)∗ → {a, b}∗ and for all distinct mor-

phisms σ, τ : var(ϕ(α))∗ → {a, b}∗ with σ ◦ ϕ(α) = ρ(α) = τ ◦ ϕ(α), σ and

τ are periodic and

(ii) for every non-periodic morphism ρ : var(α)∗ → {a, b}∗ and for all morphisms

σ, τ : var(ϕ(α))∗ → {a, b}∗ with σ ◦ ϕ = ρ = τ ◦ ϕ, σ = τ .

Proof. We define β := φ(α), and we begin with the if direction. We assume to the

contrary that β ∈ DPCP. Hence, there exist distinct morphisms σ′, τ ′ : var(β)∗ →
{a, b}∗ such that σ′(β) = τ ′(β), and at least one of these morphisms is non-periodic.

According to Condition (i) of the Theorem, this implies that every morphism ρ with

σ′(β) = ρ(α) = τ ′(β) is non-periodic. This particularly holds for every morphism

ρ satisfying ρ = σ′ ◦ ϕ or ρ = τ ′ ◦ ϕ. Thus, due to Condition (ii) of the Theorem,

the fact that σ′ and τ ′ are distinct implies that σ′ ◦ ϕ and τ ′ ◦ ϕ are distinct.

Consequently, σ′ ◦ ϕ and τ ′ ◦ ϕ are distinct non-periodic morphisms, and they

satisfy σ′ ◦ ϕ(α) = σ′(β) = τ ′(β) = τ ′ ◦ ϕ(α). This contradicts α /∈ DPCP, and

therefore β /∈ DPCP must be satisfied.

We continue with the only if direction. Let β /∈ DPCP, and let ρ : var(α)∗ →
{a, b}∗ be any morphism. If ρ is periodic, then we assume to the contrary that there

exist distinct morphisms σ′, τ ′ : var(β)∗ → {a, b}∗ such that at least one of these

morphisms is non-periodic and σ′ ◦ ϕ(α) = ρ(α) = τ ′ ◦ ϕ(α). Hence, σ′(β) = τ ′(β),

which implies β ∈ DPCP; this is a contradiction. Thus, all distinct morphisms

σ, τ : var(β)∗ → {a, b}∗ with σ ◦ ϕ(α) = ρ(α) = τ ◦ ϕ(α) must be periodic. This

proves Condition (i) of the Theorem. If, on the other hand, ρ is non-periodic, then we

assume to the contrary that there are distinct morphisms σ′, τ ′ : var(β)∗ → {a, b}∗
satisfying σ′ ◦ ϕ = ρ = τ ′ ◦ ϕ. Hence, σ′(β) = ρ(α) = τ ′(β). Furthermore, the

non-periodicity of ρ directly implies that σ′ and τ ′ are non-periodic. This again

contradicts β /∈ DPCP. Consequently, for all σ, ρ : var(β)∗ → {a, b}∗ with σ ◦ ϕ =

ρ = τ ◦ ϕ, σ = τ must hold true. This concludes the proof of Condition (ii) and,

hence, of the Theorem.

As briefly mentioned above, Theorem 6 shows that insights into the structure

of DPCP can be gained in a manner that partly circumvents the solution of word

equations. Instead, we can make use of prior knowledge on periodicity forcing words,

which mainly exists for patterns over two variables, and expand this knowledge by

studying the existence of morphisms ϕ that preserve non-periodicity (i. e., if certain

morphisms σ are non-periodic, then σ◦ϕ needs to be non-periodic; see Condition (i))
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and preserve distinctness (i. e., if certain morphisms σ, τ are distinct, then σ◦ϕ and

τ ◦ ϕ need to be distinct; see Condition (ii)).

While Theorem 6 provides a characterisation, it is mainly suitable when looking

for periodicity forcing words. We make use of this in Section 5, where, due to our

focus on the if direction of Theorem 6, the conditions may be simplified, allowing

for example morphisms, and thus large classes of periodicity forcing words to be

identified. Before we study this in more detail, we wish to consider patterns that

are in DPCP in the next section.

4. On Patterns in DPCP

In the present section, we wish to establish major sets of patterns over arbitrarily

many variables that are in DPCP. Our first criterion is based on so-called ambiguity

factorisations, which are a generalisation of imprimitivity factorisations used by

Reidenbach and Schneider [15] to characterise the morphically primitive patterns.

Using this concept, we can give a strong sufficient condition for patterns in DPCP.

Definition 7. Let α ∈ N+. An ambiguity factorisation (of α) is a mapping f :

N+ → Nn × (N+)n, n ∈ N, such that, for f(α) = (x1, x2, . . . , xn; γ1, γ2, . . . , γn),

there exist β0, β1, . . . , βn ∈ N∗ satisfying α = β0 γ1 β1 γ2 β2 . . . γn βn and

(i) for every i ∈ {1, 2, . . . , n}, |γi| ≥ 2,

(ii) for every i ∈ {0, 1, . . . , n} and for every j ∈ {1, 2, . . . , n}, var(βi)∩var(γj) = ∅,
(iii) for every i ∈ {1, 2, . . . , n}, |γi|xi = 1 and if xi ∈ var(γi′) for an i′ ∈

{1, 2, . . . , n}, γi = δ1 xi δ2 and γ′i = δ′1 xi δ
′
2, then |δ1| = |δ′1| and |δ2| = |δ′2|.

Theorem 8. Let α ∈ N+. If there exists an ambiguity factorisation of α, then

α ∈ DPCP.

Proof. Let f(α) = (x1, x2, . . . , xn; γ1, γ2, . . . , γn) be an ambiguity factorisation of

α. Hence, there exist β0, β1, . . . , βn ∈ N∗ satisfying α = β0 γ1 β1 γ2 β2 . . . γn βn.

We now consider the sets B :=
⋃
i∈{0,1,...,n} var(βi), Γ :=

⋃
i∈{1,2,...,n} var(γi) and

X := {x1, x2, . . . , xn}. Furthermore, we define morphisms ψ, σ, τ : N∗ → {a, b}∗ in

the following way:

• ψ(x) := a for x ∈ X, ψ(x) := b for x ∈ Γ \X, and ψ(x) := ε otherwise,

• σ(x) := a for x ∈ X, σ(x) := bb for x ∈ Γ \ X, and σ(x) := ε otherwise,

and

• τ(xi) := ψ(γi) for xi ∈ {x1, x2, ..., xn}, τ(x) := b for x ∈ Γ \ X, and

τ(x) := ε otherwise.

Clearly, σ and τ are non-periodic and distinct. Now, let i ∈ {1, 2, . . . , n}. It is

|γi|x = 1 for exactly one x ∈ X, namely x = xi. Hence, γi = γ1 xi γ2 with γ1γ2 ∈ (Γ\
X)+. Thus, σ(γi) = b2|γ1| a b2|γ2| = b|γ1| b|γ1| a b|γ2| b|γ2| = b|γ1| ψ(γi) b

|γ2| = τ(γi).

Since this holds for every i and since σ(x) = ε = τ(x) for every x ∈ B, we have

σ(α) = τ(α), which proves α ∈ DPCP.
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The following example illustrates Definition 7 and Theorem 8:

Example 9. Let the pattern α be given by

α := 1 · 2 · 2︸ ︷︷ ︸
γ1

· 3 · 2 · 4 · 5 · 2︸ ︷︷ ︸
γ2

· 5 · 4 · 2 · 5︸ ︷︷ ︸
γ3

· 3 · 1 · 2 · 2︸ ︷︷ ︸
γ4

This pattern has an ambiguity factorisation, as is implied by the marked γ parts

and the variables in bold face, which stand for the xi.

We now consider two distinct non-periodic morphisms σ and τ , given by σ(1) =

σ(4) = a, σ(2) = σ(5) = bb, σ(3) = ε and τ(1) = abb, τ(4) = babb, τ(2) = τ(5) =

b, τ(3) = ε. It can be verified with limited effort that σ and τ agree on α. ♦

Since ambiguity factorisations are more general than the imprimitivity factorisa-

tions (see Reidenbach, Schneider [15]) used to characterise morphically imprimitive

words, we can immediately conclude that this natural set of patterns is included in

DPCP:

Corollary 10. Let α ∈ N+. If α is morphically imprimitive, then α ∈ DPCP.

While ambiguity factorisations are a powerful tool, they are technically rather in-

volved. In this respect, our next sufficient condition on patterns in DPCP is simpler,

and expands on Statement 2 from Proposition 5.

Proposition 11. Let x, y, z ∈ N, and let α ∈ {x, y, z}+ be a pattern such that

α = α0zα1z . . . αn−1zαn, n ∈ N. If,

• for every i ∈ {0, 1, . . . , n}, αi = ε or var(αi) = {x, y}, and

• for every i, j ∈ {0, 1, . . . , n} with αi 6= ε 6= αj,
|αi|x
|αi|y =

|αj |x
|αj |y ,

then α ∈ DPCP.

Proof. W. l. o. g., let {x, y} = {1, 2} and z = 3. Let m ∈ {0, 1, . . . , n} such that αm
is of minimal length among all αi 6= ε. We choose the morphisms σ and τ from the

proof of Proposition 2 with k := |αm|1 and l := |αm|2 and set σ(3) := τ(3) := b.

This makes σ and τ non-periodic. With the same argumentation as in the proof of

Proposition 2, it is σ(αm) = τ(αm). Since the second condition of Proposition 11

implies that, for every i ∈ {0, 1, . . . , n} with αi 6= ε, |αi|x
|αi|y is identical to |αm|x

|αm|y , it

is σ(αi) = τ(αi) for every i ∈ {0, 1, . . . , n} and, thus, σ(α) = τ(α), which proves

α ∈ DPCP.

The following example pattern is covered by Proposition 11: 1 · 1 · 2 · 2 · 2 · 3 ·
1 · 2 · 2 · 1 · 2 · 3 · 1 · 1 · 1 · 1 · 2 · 2 · 2 · 2 · 2 · 2. Although Proposition 11 is restricted

to three-variable patterns, it is worth mentioning that we can apply it to arbitrary

patterns that have a three-variable subpattern of this structure. This is a direct

consequence of Proposition 5 (Statement 4).



July 21, 2014 7:52 WSPC/INSTRUCTION FILE
Day˙Reidenbach˙Schneider˙IJFCS˙DLT13

9

5. On Patterns Not in DPCP

As a result of the intensive research on binary equality sets, several examples of

patterns over two variables are known not to be in DPCP (see Section 2). Hence,

the most obvious question to ask is whether or not there exist such examples with

more than two variables (and more generally, whether there exist examples for any

given set of variables). The following results develop a structure for morphisms

which map patterns not in DPCP to patterns over larger alphabets which are also

not in DPCP, ultimately allowing for the inductive proof of Theorem 21, which

provides a strong positive answer. A major advantage of the ‘morphisms approach’

presented in this section is that it facilitates the production of the more elusive

ratio-primitive examples, since morphisms can easily preserve this property.

As discussed in Section 3, we simplify the conditions of Theorem 6, so that they

ask the morphism ϕ to be non-periodicity preserving and distinctness preserving :

Lemma 12. Let ∆1, ∆2 be sets of variables. Let ϕ : ∆1
∗ → ∆2

∗ be a morphism

such that, for every x ∈ ∆2, there exists a y ∈ ∆1 satisfying x ∈ var(ϕ(y)), and

(i) for every non-periodic morphism σ : ∆2
∗ → {a, b}∗, σ ◦ ϕ is non-periodic, and

(ii) for all distinct morphisms σ, τ : ∆2
∗ → {a, b}∗, where at least one is non-

periodic, σ ◦ ϕ and τ ◦ ϕ are distinct.

Then, for any α /∈ DPCP with var(α) = ∆1, ϕ(α) /∈ DPCP.

Proof. Let α /∈ DPCP be a pattern with var(α) = ∆1. Note that var(ϕ(α)) =

∆2. Assume to the contrary that ϕ(α) ∈ DPCP. Then there exist two distinct

morphisms σ, τ : var(ϕ(α))∗ → {a, b}∗ which agree on ϕ(α), and at least one of

them is non-periodic. By Condition (i), at least one of σ ◦ ϕ, τ ◦ ϕ will be non-

periodic and by Condition (ii), they are distinct. Clearly, if σ and τ agree on ϕ(α),

then σ ◦ϕ and τ ◦ϕ agree on α. Thus, σ ◦ϕ and τ ◦ϕ are evidence that α ∈ DPCP.

This is a contradiction, and so ϕ(α) /∈ DPCP.

Due to the nature of morphisms, it is apparent that, further than requiring that

α /∈ DPCP, the structure of α is not relevant.

Remark 13. Condition (i) of Lemma 12 is identical to asking that σ◦ϕ is periodic

if and only if σ is periodic, since σ ◦ ϕ will always be periodic if σ is periodic.

We now investigate the existence and nature of morphisms ϕ that satisfy both

conditions. Each condition is relatively independent from the other, so it is appro-

priate to first establish classes of morphisms satisfying each one separately. Con-

dition (i) is considered first. The satisfaction of Fact 1, and therefore Condition

(i) of Lemma 12 relies on specific systems of word equations having only periodic

solutions. The following lemma provides a tool for demonstrating exactly that.

Lemma 14. (Lothaire [12]) All non-trivial, terminal-free word equations in two

unknowns have only periodic solutions.
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In order to determine the satisfaction of Condition (i) of Lemma 12 for a par-

ticular morphism ϕ : ∆1
∗ → ∆2

∗, it is necessary to identify which morphisms

σ : ∆2
∗ → {a, b}∗ result in the composition σ ◦ ϕ being periodic. The next propo-

sition gives the required characterisation.

Proposition 15. Let ∆1 and ∆2 be sets of variables and let ϕ : ∆1
∗ → ∆2

∗,

σ : ∆2
∗ → {a, b}∗ be morphisms. For every i ∈ ∆1, let ϕ(i) =: βi, and let {γ1, γ2,

..., γn} be the set of all patterns βj such that σ(βj) 6= ε. If n < 2, the composition

σ ◦ ϕ is trivially periodic. For n ≥ 2, σ ◦ ϕ is periodic if and only if there exist k1,

k2, ... kn ∈ N such that

σ(γ1)k1 = σ(γ2)k2 = · · · = σ(γn)kn . (1)

Proof. Assume that σ ◦ ϕ is periodic. It follows from Fact 1 that there exists a

word w ∈ Σ+ such that for every γi, there exists an mi ∈ N with σ(γi) = wmi .

Hence there exist k1, k2, ..., kn ∈ N such that equality 1 holds; simply choose

ki := m1m2 · · · mi−1mi+1 · · · mn.

If there exist k1, k2 ∈ N such that σ(γ1)k1 = σ(γ2)k2 , then by Lemma 14 there

exists a word w ∈ Σ+ and numbers m1, m2 ∈ N0 such that σ(γ1) = wm1 and

σ(γ2) = wm2 . By continuing this argument, there must exist an mi ∈ N0 for every

γi, and therefore if equality 1 is satisfied, σ ◦ ϕ is periodic as required.

Each term σ(γi) in equality (1) corresponds directly to a word σ ◦ϕ(j), for some

j ∈ ∆1. The satisfaction of the system of equalities is identical to each word σ ◦ϕ(i)

sharing a primitive root, highlighting the nature of the relationship between σ and

the periodicity of σ ◦ ϕ.

Corollary 16. Let ∆1 and ∆2 be sets of variables, let ϕ : ∆1
∗ → ∆2

∗ be a mor-

phism, and let ϕ(i) =: βi for every i ∈ ∆1. The morphism ϕ satisfies Condition (i)

of Lemma 12 if and only if, for every non-periodic morphism σ : ∆2
∗ → {a, b}∗,

(i) there are at least two patterns βi such that σ(βi) 6= ε, and

(ii) there do not exist k1, k2, ..., kn ∈ N such that equality (1) is satisfied.

Proof. Assume that ϕ : ∆1
∗ → ∆2

∗ is a morphism satisfying both conditions for

the corollary. Then by Proposition 15, for every non-periodic morphism σ : ∆2
∗ →

{a,b}∗, the composition σ◦ϕ is also non-periodic. It follows directly that ϕ satisfies

Condition (i) of Lemma 12.

Assume that ϕ does not satisfy Condition (i) of the Corollary. Then there exists

a non-periodic morphism σ : ∆2
∗ → {a,b}∗, such that there exists only one i ∈ ∆1

with σ(βi) 6= ε. Therefore there exists only one i ∈ ∆1 such that σ ◦ ϕ(i) 6= ε, so

the composition σ ◦ ϕ is periodic. Thus there exists non-periodic σ such that σ ◦ ϕ
is periodic, and Condition (i) of Lemma 12 is not satisfied.

Assume that ϕ does not satisfy Condition (ii) of the Corollary. Then it follows

directly from Proposition 15 that there exists a non-periodic morphism σ : ∆2
∗ →
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{a,b}∗ such that the composition σ ◦ ϕ is periodic and Condition (i) of Lemma 12

does not hold.

Corollary 16 also provides a proof technique. Since any morphism ϕ will erase ex-

actly one of finitely many combinations of the patterns β1, β2, ..., βm, it is clear that

the satisfaction of Condition (ii) of Corollary 16 will always rely on finitely many

cases. By considering all possible sets {γ1, γ2, ..., γn}, infinitely many morphisms σ

can be accounted for in a finite, often very concise manner. Thus, it becomes much

simpler to demonstrate that there cannot exist a non-periodic morphism σ such

that σ ◦ϕ is periodic, and thus that Condition (i) of Lemma 12 is satisfied. We now

give an example of such an approach.

Example 17. Let ∆1 := {1, 2, 3, 4} and let ∆2 := {5, 6, 7, 8}∗. Let ϕ : ∆1
∗ → ∆2

∗

be the morphism given by ϕ(1) := 5 · 6, ϕ(2) := 6 · 5, ϕ(3) := 5 · 6 · 7 · 7 and

ϕ(4) := 6 · 8 · 8 · 5. Consider all non-periodic morphisms σ : {5, 6, 7, 8}∗ → {a, b}∗.
Note that if σ(5 · 6) 6= ε then σ(6 · 5) 6= ε and vice-versa. Also note that since σ is

non-periodic, there must be at least two variables x such that σ(x) 6= ε. So if either

σ(5 ·6 ·7 ·7) 6= ε, or σ(6 ·8 ·8 ·5) 6= ε, there must be at least one other pattern βj with

σ(βj) 6= ε. Therefore, for any non-periodic morphism σ, there exists a minimum of

two patterns βi such that σ(βi) 6= ε. Now consider all possible cases.

Assume first that σ(5 · 6) = ε. Clearly σ(5) = σ(6) = ε, so σ(6 · 5) = ε. Since σ

is non-periodic, σ(7) 6= ε and σ(8) 6= ε. By Proposition 15, σ ◦ ϕ is periodic if and

only if there exist k1, k2 ∈ N such that σ(7 · 7)k1 = σ(8 · 8)k2 . By Lemma 14, this is

the case only if σ is periodic and this is a contradiction, so σ ◦ ϕ is non-periodic.

Assume σ(5 · 6) 6= ε (so σ(6 · 5) 6= ε, σ(6 · 8 · 8 · 5) 6= ε, and σ(5 · 6 · 7 · 7) 6= ε),

then by Proposition 15, the composition σ ◦ ϕ is periodic if and only if there exist

k1, k2, k3, k4 ∈ N such that

σ(5 · 6)k1 = σ(6 · 5)k2 = σ(6 · 8 · 8 · 5)k3 = σ(5 · 6 · 7 · 7)k4 (2)

By Lemma 14, the first equality only holds if there exist a word w ∈ {a, b}∗ and

numbers p, q ∈ N0 such that σ(5) = wp and σ(6) = wq. Thus, equality (2) is satisfied

if and only if wk1(p+q) = (wq · σ(8 · 8) · wp)k3 and wk1(p+q) = (wp+q · σ(7 · 7))k4 .

By Lemma 14, this is only the case if there exist r, s ∈ N such that σ(7) = ws and

σ(8) = wr. Thus, σ is periodic, which is a contradiction, so the composition σ ◦ ϕ
is non-periodic.

All possibilities for non-periodic morphisms σ have been exhausted, so for any

non-periodic morphism σ : {5, 6, 7, 8}∗ → {a, b}∗, the composition σ ◦ ϕ is also

non-periodic and ϕ satisfies Condition (i) of Lemma 12. ♦

Condition (ii) of Lemma 12 is now considered. Fact 2 shows that it relies on

the (non-)existence of distinct, non-periodic morphisms which agree on a set of

patterns (more precisely, the set of morphic images of single variables). The following

proposition provides a characterisation for morphisms that satisfy the condition.
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Proposition 18. Let ∆1, ∆2 be sets of variables, and let ϕ : ∆1
∗ → ∆2

∗ be a

morphism. For every i ∈ ∆1, let ϕ(i) =: βi. The morphism ϕ satisfies Condition (ii)

of Lemma 12 if and only if {β1, β2, . . . , βn} is a periodicity forcing set.

Proof. Let Ξi be the set of all pairs of distinct morphisms σ, τ : ∆2
∗ → {a,b}∗,

where at least one is non-periodic, satisfying σ(βi) = τ(βi). The set {β1, β2, ..., βn}
is periodicity forcing if and only if Ξ1∩Ξ2∩· · ·∩Ξn = ∅. Assume that Ξ1∩Ξ2∩· · ·∩Ξn
is non-empty. Then, by definition, there exist distinct morphisms σ, τ : ∆2

∗ →
{a,b}∗, where at least one is non-periodic, such that σ(βi) = τ(βi) for every i ∈ ∆1.

It follows from Fact 2 that σ ◦ ϕ and τ ◦ ϕ are not distinct, so Condition (ii) does

not hold. If, instead, Ξ1 ∩ Ξ2 ∩ · · · ∩ Ξn is empty, then for any two non-periodic

morphisms σ, τ : ∆2
∗ → {a,b}∗, there exists a j ∈ ∆1 such that σ(βj) 6= τ(βj).

Therefore, by Fact 2, σ ◦ ϕ and τ ◦ ϕ must be distinct, and Condition (ii) holds as

required.

Proposition 18 demonstrates the difference between the word equations involved

in directly finding patterns not in DPCP and the word equations that need to be

considered when using Lemma 12. Furthermore, it shows the impact of the choice of

α on the complexity of applying the Lemma. However, it does not immediately pro-

vide a nontrivial morphism ϕ that satisfies Condition (ii) of Lemma 12. Therefore,

we consider the following technical tool:

Proposition 19. Let ∆1, ∆2 be sets of variables, and let ϕ : ∆1
∗ → ∆2

∗ be a

morphism. For every k ∈ ∆1, let ϕ(k) =: βk and let βi /∈ DPCP for some i ∈ ∆1.

For every x ∈ ∆2\ var(βi), let there exist βj and patterns γ1, γ2, such that βj =

γ1 · γ2 and

(1) x ∈ var(γ1), and for every y ∈ var(γ1) with y 6= x, y ∈ var(βi),

(2) γ1 /∈ DPCP with | var(γ1)| ≥ | var(βi)|,
(3) P(γ2) and P(βi) are linearly dependent.

Then ϕ satisfies Condition (ii) of Lemma 12.

Proof. Firstly, note that by Condition (2), if any of the γ1 are unary, then βi must

be unary. This results in a trivial situation, so we assume that βi (and thus also

any pattern γ1) contains at least two distinct variables.

W. l. o. g. let ∆1 := {1, 2, ..., n}. Assume that ϕ is a morphism satisfying the

conditions for the Proposition, and assume to the contrary that ϕ does not satisfy

Condition (ii) of Lemma 12. Hence by Proposition 18, the set {βk | k ∈ ∆1} is not

periodicity forcing. This is equivalent to the statement

Ξ1 ∩ Ξ2 ∩ · · · ∩ Ξn 6= ∅

where, for any k ∈ ∆1, Ξk is the set of all pairs of distinct morphisms σ, τ : ∆2
∗ →

{a,b}∗ such that at least one is non-periodic and σ(βk) = τ(βk). Thus we have two
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distinct morphisms σ, τ : ∆2
∗ → {a,b}∗, such that at least one is non-periodic, and

σ(βk) = τ(βk) for every k ∈ ∆1. Since βi /∈ DPCP, this is only possible if either

(1) σ(x) = τ(x) for every x ∈ var(βi), or

(2) there exists an x ∈ var(βi) such that σ(x) 6= τ(x), and σ and τ are periodic

over var(βi).

Let βj 6= βi be arbitrary. Let γ1, γ2 be defined accordingly. Note that, by

Condition (3), because σ(βi) and τ(βi) have the same length, so do σ(γ2) and

τ(γ2). Similarly, since σ(βj) and τ(βj) share the same length, then so do σ(γ1) and

τ(γ1). Moreover, because σ and τ agree on βi, they also agree on γ2. It follows that

σ(γ1) = τ(γ1).

Note that, by Condition (2), there is at most one variable in var(βi) which does

not occur in γ1. Furthermore there is exactly one variable in var(γ1) which does not

occur in βi by definition. Consider Case (1): that σ and τ are identical over var(βi).

Then there is exactly one variable over which they are not identical in var(γ1). This

implies σ(γ1) 6= τ(γ1) which is a contradiction.

On the other hand, if σ and τ do not agree on all variables in var(βi), then by

the same reasoning there must be at least two variables on which they disagree.

By Condition (2), this implies that at least one of those variables occurs in γ1.

Furthermore, since we now consider Case (2), there exists some word w such that

σ(x), τ(x) ∈ {w}∗ for all x ∈ var(βi). However, at least one morphism (w. l. o. g. let

it be σ) is non-periodic, so there exists a variable y /∈ var(βi) such that σ(y) /∈ {w}∗.
Since we chose βj arbitrarily, we can assume w. l. o. g. that y occurs in βj and

therefore in γ1 (it cannot occur in γ2 due to Condition (3)). This implies that σ is

non-periodic over γ1. Since σ and τ are also distinct over γ1, and due to the fact

that γ1 /∈ DPCP, it follows that σ(γ1) 6= τ(γ1). Hence σ(βj) 6= τ(βj), which is a

contradiction.

Therefore no pair of morphisms in Ξi can be in Ξ1 ∩Ξ2 ∩ ...Ξi−1 ∩Ξi+1 ∩ ...Ξn,

so Ξ1 ∩ Ξ2 ∩ · · · ∩ Ξn = ∅ and the set {βi | i ∈ ∆1} is periodicity forcing. Hence ϕ

satisfies Condition (ii) of Lemma 12 as required.

The following example demonstrates the structure given in Proposition 19. It is

chosen such that it also satisfies Corollary 16, providing a basis for the construction

given in Theorem 21.

Example 20. Let ∆1 := {4, 5}, and let ∆2 := {1, 2, 3}. Let ϕ : ∆1
∗ → ∆2

∗ be

the morphism given by ϕ(4) = β4 := 1 · 2 · 1 · 1 · 2 and ϕ(5) = β5 := γ1 · γ2 where

γ1 := 1 · 3 · 1 · 1 · 3 and γ2 := 2 · 1 · 1 · 2 · 1. Notice that β4 and γ1 are not in

DPCP. Let σ, τ : {1, 2, 3}∗ → {a, b}∗ be distinct morphisms, at least one of which

is non-periodic, that agree on β4. By definition of DPCP, this is only possible if σ

and τ agree on, or are periodic over {1, 2}.
If σ and τ agree on {1, 2}, then they agree on γ2. This means that σ(γ1 · γ2) =

τ(γ1 · γ2) if and only if σ(1 · 3 · 1 · 1 · 3) = τ(1 · 3 · 1 · 1 · 3). Furthermore σ and τ
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are distinct, so cannot agree on 3. However, since σ(1) = τ(1) but σ(3) 6= τ(3), this

cannot be the case, therefore σ ◦ ϕ and τ ◦ ϕ are distinct.

Note that if σ and τ agree on exactly one variable in {1, 2}, then they cannot

agree on β4. Consider the case that σ and τ do not agree on 1 or 2. Then they must

be periodic over {1, 2}, so σ(2 · 1 · 1 · 2 · 1) = τ(2 · 1 · 1 · 2 · 1) and, as a consequence,

σ and τ agree on γ1 · γ2 if and only if they agree on γ1 = 1 · 3 · 1 · 1 · 3. However,

due to the non-periodicity of σ or τ , σ(3) or τ(3) must have a different primitive

root (see Lothaire [12]) to σ(1) or τ(1), respectively. This means that σ and τ are

distinct over {1, 3}, and at least one of them must be non-periodic over {1, 3}. This

implies that σ and τ cannot agree on γ1, and therefore σ ◦ϕ and τ ◦ϕ are distinct.

Hence, there do not exist two distinct morphisms, at least one of which is non-

periodic, that agree on 1 · 2 · 1 · 1 · 2 and 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1. These patterns,

thus, form a periodicity forcing set, and, by Proposition 18, the morphism ϕ satisfies

Condition (ii) of Lemma 12. ♦

It is now possible to state the following theorem, the proof of which provides a

construction for ratio-primitive patterns not in DPCP over an arbitrary number of

variables. It is worth noting that for ratio-imprimitive examples, the result is not

as difficult to obtain. Results by Holub and Kortelainen [10] can be extended to

produce examples over arbitrary alphabets by showing that so-called test sets of

the set of permutations of x1 · x2 · · ·xn can modified to produce periodicity forcing

words (see [5]). These examples, however, are both highly ratio-imprimitive and

highly restricted. It is a major advantage of the following construction is that by

using a ratio-primitive pre-image (e.g., 1 · 2 · 1 · 1 · 2), one can obtain ratio-primitive

examples over any alphabet: a much stronger statement that the Dual PCP is non-

trivial in the general case. Another is that by using morphisms such as the one

constructed in the following proof, it is possible to obtain large and varied classes

of examples over any alphabet.

Theorem 21. There are ratio-primitive patterns of arbitrarily many variables not

in DPCP.

Proof. It is already established that there exist patterns over two variables which

are not in DPCP. Proceed by induction, and assume that there exists a pattern

over n variables not in DPCP with n ≥ 2, and let α ∈ {1, 2, ..., n}∗ be such

a pattern. Let ϕn : {1, 2, ..., n}∗ → {1, 2, ..., n + 1}∗ be the morphism such that

ϕn(1) := 1 ·2 ·1 ·1 ·2, and for 2 ≤ x ≤ n, ϕn(x) := 1 ·(x+1) ·1 ·1 ·(x+1) ·2 ·1 ·1 ·2 ·1.

It is shown first that ϕn satisfies Condition (i) of Lemma 12.

Let σ : {1, 2, 3, ..., n + 1}∗ → {a,b}∗ be an arbitrary non-periodic morphism.

Let γ1, γ2, ..., γm be the patterns ϕn(i) such that σ(ϕn(i)) 6= ε with 1 ≤ i ≤ n.

Note that if σ(1 · 2 · 1 · 1 · 2) 6= ε, then σ(ϕn(i)) 6= ε for every i ∈ {1, 2, ... , n}. If

σ(1 · 2 · 1 · 1 · 2) = ε, then σ(1) = σ(2) = ε. Since σ is non-periodic, there must

exist x, y ∈ {3, 4, ..., n} with x 6= y such that σ(x) 6= ε and σ(y) 6= ε. It follows

that σ(ϕ(x − 1)) 6= ε, and σ(ϕ(y − 1)) 6= ε. In either case m ≥ 2 whenever σ is
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non-periodic, so ϕ satisfies Condition (i) of Corollary 16.

Condition (ii) of Corollary 16, and therefore Condition (i) of Lemma 12 is sat-

isfied by ϕ if and only if there do not exist k1, k2, ..., km ∈ N, such that

σ(γ1)k1 = σ(γ2)k2 = · · · = σ(γm)km . (3)

Assume to the contrary that equality 3 holds. If σ(1 · 2 · 1 · 1 · 2) = ε, then σ(1) =

σ(2) = ε. Since every term in equality 3 will have at most one other unknown,

namely σ(x) with 3 ≤ x ≤ n + 1, each individual equality σ(γj)
kj = σ(γj+1)kj+1

will be in exactly two unknowns. It follows by Lemma 14 that σ must be periodic,

which is a contradiction.

If, on the other hand, σ(1 · 2 · 1 · 1 · 2) 6= ε, then equality 3 can be expressed as

a series of equalities of the form:

σ(1 · 2 · 1 · 1 · 2)ki = σ(1 · x · 1 · 1 · x · 2 · 1 · 1 · 2 · 1)kj (4)

where 3 ≤ x ≤ n+1. By comparing the suffix of length |σ(1)|+ |σ(2)| on either side,

σ(1)σ(2) = σ(2)σ(1), so, by Lemma 14, there exists w ∈ {a,b}+ and n, m ∈ N0

such that σ(1) = wn and σ(2) = wm. It follows that equality 4 can be expressed as

wki(3n+2m) = (wn · σ(x) · w2n · σ(x) · w3n+2m)kj

which is an equation in two unknowns. Thus, there exists an l ∈ N0 such that

σ(x) = wl for 3 ≤ x ≤ n + 1, and σ is periodic, which is a contradiction. Conse-

quently, equality 3 cannot be satisfied by a non-periodic morphism, hence ϕ satisfies

Condition (ii) of Corollary 16, and Condition (i) of Lemma 12.

Condition (ii) of Lemma 12 is now considered. Note that ϕ(1) = 1 · 2 · 1 · 1 · 2 /∈
DPCP. For every x ∈ {3, 4, ..., n + 1}, there exists an i ∈ {1, 2, ..., n} such that

ϕ(i) = γ1 · γ2 with γ1 = 1 · x · 1 · 1 · x and γ2 = 2 · 1 · 1 · 2 · 1. Thus, x ∈ var(γ1), and

for every y ∈ var(γ1) with y 6= x, y ∈ var(ϕ(1)). Also, 1 · x · 1 · 1 · x = γ1 /∈ DPCP,

and | var(γ1)| = | var(ϕ(1))|. Furthermore, |γ2|z = |ϕ(1)|z for every z ∈ {1, 2, ...,

n+ 1}. Therefore, by Proposition 19, ϕ also satisfies Condition (ii) of Lemma 12.

Consequently, ϕ(α) /∈ DPCP by Lemma 12, and | var(ϕ(α))| = n+ 1. So if there

exists a pattern with n variables not in DPCP, there exists a pattern with n + 1

variables also not in DPCP. By induction, there exist patterns of arbitrarily many

variables not in DPCP as required. It is not difficult to see that all the patterns

obtained in this sequence are ratio-primitive.

Note that while the above theorem focuses on ratio-primitive examples, corre-

sponding classes of ratio-imprimitive periodicity forcing words can be obtained sim-

ply by substituting a ratio-imprimitive periodicity forcing word, such as 1·2·1·1·2·2,

for α. Thus, the above method also yields large and varied classes of ratio-

imprimitive periodicity forcing words over arbitrarily large alphabets.
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