26,243 research outputs found

    The terms in Lucas sequences divisible by their indices

    Get PDF
    For Lucas sequences of the first kind (u_n) and second kind (v_n) defined as usual for positive n by u_n=(a^n-b^n)/(a-b), v_n=a^n+b^n, where a and b are either integers or conjugate quadratic integers, we describe the set of indices n for which n divides u_n and also the set of indices n for which n divides v_n. Building on earlier work, particularly that of Somer, we show that the numbers in these sets can be written as a product of a so-called basic number, which can only be 1, 6 or 12, and particular primes, which are described explicitly. Some properties of the set of all primes that arise in this way is also given, for each kind of sequence

    Lucas' theorem: its generalizations, extensions and applications (1878--2014)

    Full text link
    In 1878 \'E. Lucas proved a remarkable result which provides a simple way to compute the binomial coefficient (nm){n\choose m} modulo a prime pp in terms of the binomial coefficients of the base-pp digits of nn and mm: {\it If pp is a prime, n=n0+n1p+⋯+nspsn=n_0+n_1p+\cdots +n_sp^s and m=m0+m1p+⋯+mspsm=m_0+m_1p+\cdots +m_sp^s are the pp-adic expansions of nonnegative integers nn and mm, then \begin{equation*} {n\choose m}\equiv \prod_{i=0}^{s}{n_i\choose m_i}\pmod{p}. \end{equation*}} The above congruence, the so-called {\it Lucas' theorem} (or {\it Theorem of Lucas}), plays an important role in Number Theory and Combinatorics. In this article, consisting of six sections, we provide a historical survey of Lucas type congruences, generalizations of Lucas' theorem modulo prime powers, Lucas like theorems for some generalized binomial coefficients, and some their applications. In Section 1 we present the fundamental congruences modulo a prime including the famous Lucas' theorem. In Section 2 we mention several known proofs and some consequences of Lucas' theorem. In Section 3 we present a number of extensions and variations of Lucas' theorem modulo prime powers. In Section 4 we consider the notions of the Lucas property and the double Lucas property, where we also present numerous integer sequences satisfying one of these properties or a certain Lucas type congruence. In Section 5 we collect several known Lucas type congruences for some generalized binomial coefficients. In particular, this concerns the Fibonomial coefficients, the Lucas uu-nomial coefficients, the Gaussian qq-nomial coefficients and their generalizations. Finally, some applications of Lucas' theorem in Number Theory and Combinatorics are given in Section 6.Comment: 51 pages; survey article on Lucas type congruences closely related to Lucas' theore

    The congruence of Wolstenholme and generalized binomial coefficients related to Lucas sequences

    Full text link
    Using generalized binomial coefficients with respect to fundamental Lucas sequences we establish congruences that generalize the classical congruence of Wolstenholme and other related stronger congruences.Comment: 23 page

    Note on Ward-Horadam H(x) - binomials' recurrences and related interpretations, II

    Full text link
    We deliver here second new H(x)−binomials′\textit{H(x)}-binomials' recurrence formula, were H(x)−binomials′H(x)-binomials' array is appointed by Ward−HoradamWard-Horadam sequence of functions which in predominantly considered cases where chosen to be polynomials . Secondly, we supply a review of selected related combinatorial interpretations of generalized binomial coefficients. We then propose also a kind of transfer of interpretation of p,q−binomialp,q-binomial coefficients onto q−binomialq-binomial coefficients interpretations thus bringing us back to Gyo¨rgyPoˊlyaGy{\"{o}}rgy P\'olya and Donald Ervin Knuth relevant investigation decades ago.Comment: 57 pages, 8 figure

    On numbers nn dividing the nnth term of a linear recurrence

    Full text link
    Here, we give upper and lower bounds on the count of positive integers n≤xn\le x dividing the nnth term of a nondegenerate linearly recurrent sequence with simple roots
    • …
    corecore