48 research outputs found

    Machine learning approach for segmenting glands in colon histology images using local intensity and texture features

    Full text link
    Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup

    Micrometastasis Detection Guidance by Whole-Slide Image Texture Analysis in Colorectal Lymph Nodes

    Get PDF
    Introduction/ Background Cancer is a disease that affects millions worldwide and accurate determination of whether lymph nodes (LNs) near the primary tumor contain metastatic foci is of critical importance for proper patient management. Histopathological evaluation is the only accepted method to make that determination. However, the current standard of care only examines a single central histological section per LN and yields an unacceptable false-negative rate. Aims To help pathologists in their examination we propose a method that extracts textural features from histopathological LN whole slide images (WSI) and then applies support vector machines (SVMs) to automatically identify regions suspicious for metastatic foci. Methods The database consisted of WSI from 44 LNs. Sections were stained with hematoxylin-eosin and examined at 20x (0.45μm resolution). Twenty-eight of the LNs were identified by an expert pathologist as positive for cancer (P), and the remaining sixteen were negative (N). This database was divided into two groups. Group 1 (15P and 5N) was used for training and Group 2 (13P and 11N) was used for testing the classification technique. For all analysis each WSI was divided into non-overlapping 1000 x 1000 pixel sub-images that will be referred to as high-power fields (HPFs). For each LN in Group 1, at least one WSI was annotated by a pathologist to identify rectangular, HPF-scale regions as locally cancerous or locally non-cancerous. From these annotated slides, 924 HPFs (462 P and 462 N) were obtained. For each of these HPFs, statistical features based on gray-level co-occurrence matrices [1] and Law’s texture energy measures [2, 3] were extracted from 9 derived images [4]. The extracted features were submitted to a sequential forward selection (SFS) method [5] to select few non-redundant features providing best class separation (cancerous vs. non-cancerous region). Combinations of the selected features were tested on the 924 HPFs using k-fold cross-validation to find those that produced the best results and consequently to train our SVM-based classifier. In Group 2, WSI were not annotated for cancerous and non-cancerous zones on a HPF scale. Each LN, however, had been labeled by a pathologist as positive or negative for cancer. For each WSI, each section was divided into contiguous HPFs, and those which mainly contain fatty tissue, background, and tears were automatically excluded. Each selected HPFs was classified as cancerous or non-cancerous using the previously trained classifier to obtain the total number of cancer-classified per LN. A receiver operating characteristics (ROC) curve was traced by changing the discriminator threshold (T) used to label the LN as P for cancer as a function of the total number of cancer-classified HPFs. Results During training, 5 Laws features were selected by SFS. Highly satisfactory k-fold cross-validation with a F-score of 0.996 ± 0.005 was obtained using only 2 statistical features computed at different scales. The ROC curve obtained by applying the SVM-classifier to the test set is shown in the next figure. Two valuable operating points can be identified which both guaranteed no false-negative. At T=11 we got 2 false-positives and an optimal F-score of 0.917, and with a more conservative approach, T=1, we got 7 false-positives and a F-score of 0.759. The top-left part of the slide displayed in next figure would have been proposed to the pathologist as the most suspicious region of the cancerous LN

    Capturing Global Spatial Context for Accurate Cell Classification in Skin Cancer Histology

    Get PDF
    The spectacular response observed in clinical trials of immunotherapy in patients with previously uncurable Melanoma, a highly aggressive form of skin cancer, calls for a better understanding of the cancer-immune interface. Computational pathology provides a unique opportunity to spatially dissect such interface on digitised pathological slides. Accurate cellular classification is a key to ensure meaningful results, but is often challenging even with state-of-art machine learning and deep learning methods. We propose a hierarchical framework, which mirrors the way pathologists perceive tumour architecture and define tumour heterogeneity to improve cell classification methods that rely solely on cell nuclei morphology. The SLIC superpixel algorithm was used to segment and classify tumour regions in low resolution H&E-stained histological images of melanoma skin cancer to provide a global context. Classification of superpixels into tumour, stroma, epidermis and lumen/white space, yielded a 97.7% training set accuracy and 95.7% testing set accuracy in 58 whole-tumour images of the TCGA melanoma dataset. The superpixel classification was projected down to high resolution images to enhance the performance of a single cell classifier, based on cell nuclear morphological features, and resulted in increasing its accuracy from 86.4% to 91.6%. Furthermore, a voting scheme was proposed to use global context as biological a priori knowledge, pushing the accuracy further to 92.8%. This study demonstrates how using the global spatial context can accurately characterise the tumour microenvironment and allow us to extend significantly beyond single-cell morphological classification.Comment: Accepted by MICCAI COMPAY 2018 worksho

    Primer for Image Informatics in Personalized Medicine

    Get PDF
    AbstractImage informatics encompasses the concept of extracting and quantifying information contained in image data. Scenes, what an image contains, come from many imager devices such as consumer electronics, medical imaging systems, 3D laser scanners, microscopes, or satellites. There is a marked increase in image informatics applications as there have been simultaneous advances in imaging platforms, data availability due to social media, and big data analytics. An area ready to take advantage of these developments is personalized medicine, the concept where the goal is tailor healthcare to the individual. Patient health data is computationally profiled against a large of pool of feature-rich data from other patients to ideally optimize how a physician chooses care. One of the daunting challenges is how to effectively utilize medical image data in personalized medicine. Reliable data analytics products require as much automation as possible, which is a difficulty for data like histopathology and radiology images because we require highly trained expert physicians to interpret the information. This review targets biomedical scientists interested in getting started on tackling image analytics. We present high level discussions of sample preparation and image acquisition; data formats; storage and databases; image processing; computer vision and machine learning; and visualization and interactive programming. Examples will be covered using existing open-source software tools such as ImageJ, CellProfiler, and IPython Notebook. We discuss how difficult real-world challenges faced by image informatics and personalized medicine are being tackled with open-source biomedical data and software
    corecore