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Abstract 

Image informatics encompasses the concept of extracting and quantifying information contained in image data. Scenes, what an image 
contains, come from many imager devices such as consumer electronics, medical imaging systems, 3D laser scanners, microscopes, or 
satellites. There is a marked increase in image informatics applications as there have been simultaneous advances in imaging platforms, data 
availability due to social media, and big data analytics. An area ready to take advantage of these developments is personalized medicine, the 
concept where the goal is tailor healthcare to the individual. Patient health data is computationally profiled against a large of pool of feature-
rich data from other patients to ideally optimize how a physician chooses care. One of the daunting challenges is how to effectively utilize 
medical image data in personalized medicine. Reliable data analytics products require as much automation as possible, which is a difficulty for 
data like histopathology and radiology images because we require highly trained expert physicians to interpret the information. This review 
targets biomedical scientists interested in getting started on tackling image analytics. We present high level discussions of sample preparation 
and image acquisition; data formats; storage and databases; image processing; computer vision and machine learning; and visualization and 
interactive programming. Examples will be covered using existing open-source software tools such as ImageJ, CellProfiler, and IPython 
Notebook. We discuss how difficult real-world challenges faced by image informatics and personalized medicine are being tackled with open-
source biomedical data and software. 
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1. Introduction 

Image informatics aims to extract, quantify, and compare information contained within images. The field continues to improve 
efficiency, usability and reliability of image analyses. Various consumer electronics such as cell phone cameras, medical imaging 
scanners or microscopes are rapidly expanding the data available to image informatics.  There is an increasing need for high-
throughput, robust image informatics applications in part due to simultaneous advances in imaging platforms, data availability 
due to social media, and big data analytics. 

Personalized medicine, with the goal to tailor healthcare to individuals, is preparing to take advantage of these developments. 
Patient health data is computationally profiled against a large pool of feature-rich data from other patients to ideally optimize how 
a physician chooses care. Medical imaging plays an important role in diagnostics and monitoring. Numerous challenges involved 
with medical images need to be tackled before this data can be used at scale. 

Analytic approaches to biomedical images range from full-automation to manual, expert interpretation. Creating reliable 
analytics data products to be consumed by personalized medicine requires a high degree of automation. This is necessary in part 
to limit effects of individual decision bias; and to create standards for interpretation procedures and data processing speed to 
digest potentially decades of archived medical data. 
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Automating meaningful quantitative methods for histopathology images is particularly challenging. Consider the work 
performed by pathologist physicians with extensive, specialized training. Their diagnostic assessments extend beyond what is 
seen under the microscope; often referring to medical records and experience. Replicating human expertise is particularly 
challenging as well as controversial. Most productive conversations tend to focus on automating what can be performed by 
machine, such as image acquisition and quantitative cell imaging. For example, to reduce some subjective bias and costly manual 
interpretation of tissue slides many algorithms and commercial tools for quantitative and objective analysis have been developed 
[1, 2]. 

Scanners such as magnetic resonance imaging (MRI) or computed tomography (CT) machines often used in diagnostic 
radiology output digital image data. There are numerous analytic software tools with broad usage. However, there is limited 
adoption by clinicians of any computer-aided diagnostic tools [3]. In fact, clinical evidence shows that such tools do not provide 
clinical benefit [4]. Data challenge contests continue to push for the development of tools to meet the needs of clinicians [5, 6]. 

In this primer, we present common, initial approaches to biomedical and clinical image data analytics. Concepts including data 
preparation and data formats; data access and storage systems; image processing; visualization and interactive programming; and 
computer vision and machine learning. Example workflows demonstrate how researchers new to image analytics can get started 
using popular open-source software tools such as CellProfiler, ImageJ, and IPython Notebook. These tools represent entry points 
to complex quantification tasks for personalized medicine. 

2. Parameters Affecting Data Acquisition 

Two pervasive factors that limit large-scale image analytics in personalized medicine arise from differences involved in 
operating imaging devices and specimen preparation. To illustrate by example, MRI and CT scanners produced by different 
manufacturers output varying intensity readings despite using the same scanning protocol [7, 8]. Techniques, such as phantom 
calibrations, have been developed to address these sorts of issues [9], however they are not yet standards and not used in clinical 
systems. Inconsistencies also arise in pathology tissue sample preparation where technicians from different laboratories may vary 
techniques for embedding and staining. 

When considering large scale radiology and histology imaging analysis across different patients or many institutions, we need 
to consider standards image including required illumination or intensity, resolution, compression, file format, pixel depth. 
Although a wide range of requirements and parameters such as human factors or non-imaging parameters makes universal 
standards difficult, we need to define these parameters first and develop a systematic approach for standardization. Techniques to 
perform these sorts of tasks are specific to the imaging modality. Establishing guidelines for these cases require experimental 
systems to test algorithms and workflows. 

3. Storage and Formats 

There is momentum toward digital image acquisition and storage in clinical radiology. Common diagnostic sonography 
scanners and X-ray machines are moving toward digital recording directly to electronic health record (EHR) systems. There is 
rapid feedback for clinicians, who may not be onsite with the patient. X-ray radiation dosages have been reduced using digital 
scanner systems while maintaining or improving image quality [10]. Pathology is also adopting digital microscopy systems to 
allow integration with consultation services and hospital EHRs. 

The accepted standard medical image format is Digital Imaging and Communications in Medicine (DICOM), which also 
includes definitions for data transmission [11]. The consortium for updating these standards are led by medical imaging experts 
and device manufacturers. DICOM images are outputted from scanner to hospital systems, Picture Archiving and 
Communication Systems (PACS). PACS allow storage and retrieval of images and are often integrated as a component of EHRs. 

Digital systems have been in place for decades for MRI and CT systems. More recently digital pathology is relying on whole 
slide imagers (WSI), automated microscopy systems which record images from slides, possibly at multiple resolutions. These 
virtual slides are stored and cataloged. However, there is not yet a consensus format such as DICOM for digital pathology. 
Common formats include TIFF, JPEG, and formats specific to scanner manufacturers. 

Many biomedical image formats accommodate compression to reduce on-disk storage requirements and to increase data 
transmission efficiency. Popular lossless compression techniques include run-length encoding and DEFLATE [12]. Lossy 
techniques such as JPEG effectively reduce data size while tending to preserve salient visual features. Lossless compression, 
which tend to be less effective for data size reduction, is preferred for maintaining the original content often desired in analytic 
applications without introducing compression artifacts observed in lossy compression, as artifacts can affect accuracy of 
techniques such as segmentation. 

Biomedical research groups working on large image datasets often rely on networked file systems which provide extended 
storage and often backup. Many groups rely on internal information technology departments for management. The technologies 
that provide this functionality are storage area network (SAN), network attached storage (NAS), and distributed file systems. 
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SAN and NAS both allow remote storage volumes to be mounted as a system drive. Distributed file systems such as Lustre, 
Gluster, and Ceph are utilized for redundancy and reliability within larger storage systems. 

In recent years, public cloud providers such as Amazon Web Services (AWS) and Google Cloud have gained popularity with 
biomedical research groups. The popularity of these storage services can be attributed to the low cost and horizontally scalability 
of these solutions. In the context of image informatics, labs may produce more data than is locally available, making cloud 
storage attractive. A major caveats of cloud storage systems in clinical settings are Protected Health Information and Health 
Insurance Portability and Accountability Act (HIPAA) privacy enforcement [13]. Some providers have demonstrated capabilities 
to go beyond HIPAA requirements, yet there is continued reluctance to utilize cloud storage by hospital systems. 

4. Applications of Image Processing 

Image processing techniques arise from signal processing. Operations are most frequently used to enhance and extract features 
or to suppress unwanted information like noise or background. Here example applications of image processing often applied to 
2D pathology and 3D radiology images are discussed. This is a cursory overview of possible approaches. 

4.1. Stain normalization for histopathology 

Staining histology specimens often vary. Stain normalization is the process which measures staining variation using histogram 
equalization or the rank statistics of the input image and removes this variation in each color channel [14]. In situations where 
either hematoxylin or eosin stain components have unequal representation, normalization approaches like color deconvolution is 
used [15]. 

4.2. MRI dataset registration 

Aligning and warping data, known as registration, is frequently used in longitudinal or population comparison radiological 
studies. Bringing together multiple 3D radiology images generally requires calculating the offsets to align. Offsets correspond to 
rigid and non-rigid transformations. Rigid transformations affect scale, translation, and rotation while non-rigid transformations 
deal with affine and non-linear deformations [16]. 

5. Applications of Computer Vision and Machine Learning 

Approaches to recognizing what is happening in images along with understanding trends within large datasets have arisen 
from combinations of algorithms in two distinct sub-fields of computer science: computer vision and machine learning. 
Computer vision algorithms often perform tasks such as segmentation, detection, and tracking. Machine learning algorithms use 
image analysis to develop models or representations for predicting or categorizing image content. Recent trends in deep learning 
using convolutional neural networks are blurring boundaries between computer vision and machine learning [17]. 

Methods to discover useful information biomedical data like histopathology microscopy images tends to be specific to which 
questions are being asked. For example, automated cancer grading techniques require detecting suspected tumor regions, 
segmenting structures like nuclei, and deciding which cancer grade the structures represent. To do so, first we need to extract 
features, the components of the data contributing a statistically significant signal which can be used for identifying different 
categories. Using histopathology as an example, computed features like morphological profiles and texture are extensively used 
for defining nuclei types [18]. From extracted features, nuclei can be classified to categories tumor-like or normal [19]. 

Complex classification tasks, such as segmenting normal versus tumor cells, require a combination of unsupervised and 
supervised learning techniques in order to be effective. Unsupervised learning uses concepts like principal component analysis 
and clustering, which group statistically similar data features. Supervised learning relies on training data containing annotated or 
correctly identified observations. Supervised approaches tend to require large amounts of reliable training data. In personalized 
medicine, preparing training data can be both expensive and time consuming. Training data preparation for histopathology or 
radiology requires a pathologist or radiologist, respectively, to visually examine and correctly annotate images. Depending on the 
machine learning goal, these tasks may require both precise hand-drawn polygon labels and consensus from several specialists 
annotating the data to limit individual bias in training. Recent semi-supervised learning approaches aim to unify the prior 
techniques, requiring a small training dataset while progressively augmenting its size using a best-guess approach. There is an 
ongoing focus on engineering feature selection procedures to determine optimal approaches for machine learning techniques 
such as Bayesian networks, Markov models, K-nearest neighbors and support vector machines [20]. 

6. Visualization and Interactive Programming 

Image visualization tools are needed to both aid researchers in experimental workflow development and present clinicians 
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with images needed for decision making. Presentation of images may be original "raw" data or transformed data, depending on 
the application. Pathology images are most often presented as large 2D microscopy slide panels with capabilities such as zoom 
and region of interest annotations. MRI and CT instruments capture data in three dimensions, but are presented to clinicians in 
2D to simplify analysis. This 2D presentation of a 3D scan across sagittal, coronal, and transverse views is frequently referred to 
as 2.5D visualization. 

Various system architecture styles may be used with visualizations. Viewers may reside as a stand-alone desktop application. 
Clinical radiology images are most frequently presented by online viewers retrieve which images from credentialed data server 
while rendering occurs at the local computer system. There are also efforts to bring clinical viewers to smart phones and tablets 
where rendering may be occur at the client or server side depending on devices and bandwidth. 

The Open Health Imaging Foundation (OHIF) is a non-profit organization focused on developing open source clinical 
radiology data tracking and viewer [21]. The OHIF viewer runs in a web browser with capabilities to support views in standard 
desktop systems as well as some viewer support tablet computers and smart phones. By developing open-source software the 
foundation hopes to gain support and co-development by the community. Rendering occurs on the client system while data is 
served remotely. 

OMERO is an open source system for handling microscopy data, providing data visualization, data management and some 
functionality for data processing [22]. The Bio-Formats library is a Java library which reads and writes over 140 proprietary 
microscopy formats. This library is a core component of OMERO's capability to work with many types of microscopy systems. 
Software in the OMERO distribution includes a desktop client, web client, and API, which allows developers to build custom 
applications on top of OMERO. The Open Microscopy Environment team along with the biomedical imaging community 
develop image analysis scripts that can be executed from the OMERO client. 

Cytomine is an open source web application solution for remote pathology image viewing and collaborative annotations [23]. 
By utilizing modern web frameworks and building on the efforts of other open source image pathology tools, Pathology 
scientists often use the tool find regions of interest using built-in computer vision algorithms. Summaries can be exported 
directly to email. 

Developing algorithms and workflows to transform images into measurable units is aided by rapid feedback from integrated 
visualization tools. One of the most popular tools for biomedical imaging is ImageJ [24]. The application originally created at the 
NIH started in 1987 has since become one of the most widely used image processing application in the biological microscopy 
community. The reason for its popularity among scientists can be attributed to its cross platform execution, ease to use, and wide 
file format support. The biological imaging community has contributed over 400 image algorithms back to the code base. These 
plugins ship with Fiji, an enhanced variant of ImageJ [25]. ImageJ and Fiji provide 2D, 2.5D, 3D, and volume rendering views. 

The wide variety of algorithms and workflow packages provided with Fiji allow quick experimentation with rapid visual 
feedback. As an example of Fiji utility, we show a method to segment tumor masses from MRI images in the glioblastoma 
component of the Cancer Imaging Archive [26]. Each dataset contains at least one likely tumor mass per image providing the 
possibility to extract features such as size, shape, or texture across the entire cohort. Figure 1 shows how the "level sets" 
segmentation plugin was used to perform 3D segmentation on a large, distinctive tumor. The resulting segmentation may be 
visualized as well as quantified. Greyscale value intensities with the segmented region present a narrower distribution with larger 
values. 

7. Illustrations 

All figures should be numbered with Arabic numerals (1,2,3,….). Every figure should have a caption. All photographs, 
schemas, graphs and diagrams are to be referred to as figures. Line drawings should be good quality scans or true electronic 
output. Low-quality scans are not acceptable. Figures must be embedded into the text and not supplied separately. In MS word 
input the figures must be properly coded. Preferred format of figures are PNG, JPEG, GIF etc. Lettering and symbols should be 
clearly defined either in the caption or in a legend provided as part of the figure. Figures should be placed at the top or bottom of 
a page wherever possible, as close as possible to the first reference to them in the paper. Please ensure that all the figures are of 
300 DPI resolutions as this will facilitate good output. 

The figure number and caption should be typed below the illustration in 8 pt and left justified [Note: one-line captions of 
length less than column width (or full typesetting width or oblong) centered]. For more guidelines and information to help you 
submit high quality artwork please visit: http://www.elsevier.com/artworkinstructions Artwork has no text along the side of it in 
the main body of the text. However, if two images fit next to each other, these may be placed next to each other to save space. 
For example, see Fig. 1. 

CellProfiler is an open-source, cross platform biological image analysis software package developed by the Broad Institute 
[27]. The software is targeted for use in high-throughput in vitro cell phenotype quantification. The user may use the graphical 
interface to construct analytical pipelines involving image processing, computer vision, and statistical analysis without requiring 
knowledge of programming nor principles of signal and image processing. Those with training may access methods to 
programmatically operate the software, allowing finer control over processes. There are over 70 processing modules, each with 
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accompanying tutorials, which can be used to generate processing pipelines. If desired functionality is not available, additional 
functionality can be programmed and imported through APIs. 

Data processing pipelines, which chain customized processing and analysis functions can be reused and distributed as text 
files. These allow sharing of the steps needed to achieve results, which is an increasingly common requirement of scientific 
journals [28]. Pipelines can operate in computing cluster systems. Results may be outputted to flat files or MySQL databases, 
which provides data format consistency and a rudimentary setup for data provenance. 

A common use case is quantifying in vitro cancer cell responses to drug molecules. In this example dataset, microscopy 
images were acquired of cancer cell lines in three experimental conditions: control, wortmannin, and drug compound LY294002 
[29]. While the biological significance is beyond this text, we show how CellProfiler can be used to quantify biochemical 
processes that is captured as image snapshots. The steps illustrated in show the transformation from images to meaningful results 
(figure 2). After importing images, processing modules are added to the pipeline to run serial operations. Here, the first module 
applies illumination correction which normalizes brightness and contrast within the image. Next, a watershed algorithm segments 
cells against the background. The segmented image results are then used to extract features like size, shape, intensity, and 
texture; lastly, the export module writes this data to common file formats, which may be used in downstream analyses. 
 

 

Fig. 1. The enhanced distribution of ImageJ, Fiji, was used to segment and quantify a candidate glioblastoma tumor. (A) The site of the tumor can be identified 
against apparent normal tissue background. (B) Applying level set segmentation with a single seed point yields a discrete 3D sub-volume. (C) A normalized 

histogram of pixel intensities of the tumor component, rendered as an isosurface in the boxed sub-panel, is compared to the normalized histogram of intensity 
values of the original image volume. 

 

 

Fig. 2. Images of cancer cells having various treatments. In each panel, the original microscopy image is transformed to a representation of the segmented results. 
Conditions represented are (A) the control, (B) wortmannin, and (C) compound LY294002. (D) Shows a summary graphical view of the three different 

conditions. Clusters form based on three extracted features from the images (all three features are normalized to unit variance). 
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8. IPython Notebook 

IPython Notebook (shortened to Notebook) is a web browser based interactive coding and experimentation environment [30]. 
Code, documentation, and results are in files which may be shared. Notebook evolved from the IPython shell, an interactive 
Python command-line interface. Features of IPython and Notebook include macros called magic commands, completion, and 
execution history. Notebook was designed around concepts in other graphical notebook environments, like Mathematica and 
Sage for the Python language. Its creators aimed to make it a natural extension of the shell. Notebook's intuitive development 
model has become popular for data scientists and coders alike, so much so that there is now kernel support for over 40 other 
languages under Project Jupyter. 

Code may be executed in cells, which are isolated coding sections sharing a global space. Running individual cells allows for 
rapid experimentation without running all code, as would be the case in typical file-based development. Cell execution results are 
displayed inline after each cell, which gives a unified place for feedback and code instead of performing command line 
operations.  

Illustrated here is an interactive session for segmenting cell nuclei from an H&E prepared tissue section (figure 3). The 
view_image function take a threshold argument and displays an overlay of colorized regions above this number. The 
browse_images function calls view_image using Notebook's interact functionality - which makes the interface responsive to user 
input without requiring page reloads. Until Notebook abstracted and generalized this type of interactivity, graphical feedback 
depended on Python libraries like wx, larger graphical libraries like Qt, or domain specific tools such as user interface tools in 
the computer vision library, OpenCV. Multiple interactive tools can be applied, in this case to apply size filters for segmentation 
results. The ultimate analysis product here is a matplotlib scatter plot which compares segmented cell area to H&E stain 
intensity. 

9. Conclusion 

Personalized medicine is preparing to utilize large and varied clinical data. Bioinformatics efforts are rapidly expanding the 
use and availability of genomic sequencing data. In practice, whole genomes can be compared across individuals and species as 
linear sequences. However, genomic data is fundamentally limited to the four bases of DNA but spatial arrangement and 
organization of cells, tissues, and structure are generally not reflected in genomics. Thus, integrating imaging informatics can 
refine and complement genomic analysis. In general, biomedical images have a larger degree of complexity, as image data is 
multi-dimensional and frequently composed of multiple channels with a wide range of pixel values. 

To uncover the salient information in images, we must understand how to extract these signals or reduce less-meaningful 
background. This large parameter space frequently results from data acquisition and scanner systems; and biological differences 
in specimens and patients. This limits general solutions to extract clinically actionable information for most types of biomedical 
images, resulting in custom or manually tuned approaches for each application. Recent efforts in deep learning, celebrated for 
high accuracy in classification tasks, are at the intersection of computer vision and machine learning. Deep learning tends to 
require an abundance of data for training, which is challenging for clinical applications because not enough examples of a 
condition exist, or medical privacy restrictions. 

Ongoing efforts are working to meet these challenges; the National Cancer Institute hosts open source datasets, such as The 
Cancer Genome Atlas and The Cancer Imaging Archive data portals, as well as open data competitions. These public initiatives, 
coupled with open source software development, promote global, cross-disciplinary efforts. Simultaneously, public cloud 
computing platforms are transforming the scale of these approaches. Where medical privacy restrictions remain in place, large 
hospital systems are able to pool internal data sources for systemic big data approaches [31]. 
Utilizing concepts presented here, researchers new to image analytics can develop novel approaches to image analytics. Software 
tools providing visual feedback are most effective for rapidly creating sophisticated workflows. Those with programming 
experience have greater flexibility to investigate new methods. 
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Fig. 3. Illustration of example workflow. (A) Python code is edited in the cell shown here. (B) Image display with the original image with an interactive overlay 
of segmentation results. The slider above the image changes threshold level. (C) Segmented objects are shown in red on a blue background. The sliders above the 
image determine minimum and maximum object size. Objects outside that range are omitted from the image and resulting list. (D) Scatter plot showing results of 

segmentation and cell sorting. Each point represents a cell object where x-axis is object area and y-axis is mean object intensity. 
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