5 research outputs found

    Top-N Recommender System via Matrix Completion

    Full text link
    Top-N recommender systems have been investigated widely both in industry and academia. However, the recommendation quality is far from satisfactory. In this paper, we propose a simple yet promising algorithm. We fill the user-item matrix based on a low-rank assumption and simultaneously keep the original information. To do that, a nonconvex rank relaxation rather than the nuclear norm is adopted to provide a better rank approximation and an efficient optimization strategy is designed. A comprehensive set of experiments on real datasets demonstrates that our method pushes the accuracy of Top-N recommendation to a new level.Comment: AAAI 201

    A Nonconvex Relaxation Approach for Rank Minimization Problems

    No full text
    Recently, solving rank minimization problems by leveraging nonconvex relaxations has received significant attention. Some theoretical analyses demonstrate that it can provide a better approximation of original problems than convex relaxations. However, designing an effective algorithm to solve nonconvex optimization problems remains a big challenge. In this paper, we propose an Iterative Shrinkage-Thresholding and Reweighted Algorithm (ISTRA) to solve rank minimization problems using the nonconvex weighted nuclear norm as a low rank regularizer. We prove theoretically that under certain assumptions our method achieves a high-quality local optimal solution efficiently. Experimental results on synthetic and real data show that the proposed ISTRA algorithm outperforms state-of-the-art methods in both accuracy and efficiency
    corecore