1,346 research outputs found

    UAV flight coordination for communication networks:Genetic algorithms versus game theory

    Get PDF
    The autonomous coordinated flying for groups of unmanned aerial vehicles that maximise network coverage to mobile ground-based units by efficiently utilising the available on-board power is a complex problem. Their coordination involves the fulfilment of multiple objectives that are directly dependent on dynamic, unpredictable and uncontrollable phenomena. In this paper, two systems are presented and compared based on their ability to reposition fixed-wing unmanned aerial vehicles to maintain a useful airborne wireless network topology. Genetic algorithms and non-cooperative games are employed for the generation of optimal flying solutions. The two methods consider realistic kinematics for hydrocarbon-powered medium-altitude, long-endurance aircrafts. Coupled with a communication model that addresses environmental conditions, they optimise flying to maximising the number of supported ground-based units. Results of large-scale scenarios highlight the ability of genetic algorithms to evolve flexible sets of manoeuvres that keep the flying vehicles separated and provide optimal solutions over shorter settling times. In comparison, game theory is found to identify strategies of predefined manoeuvres that maximise coverage but require more time to converge

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Strategic Deployment of Swarm of UAVs for Secure IoT Networks

    Full text link
    Security provisioning for low-complex and constrained devices in the Internet of Things (IoT) is exacerbating the concerns for the design of future wireless networks. To unveil the full potential of the sixth generation (6G), it is becoming even more evident that security measurements should be considered at all layers of the network. This work aims to contribute in this direction by investigating the employment of unmanned aerial vehicles (UAVs) for providing secure transmissions in ground IoT networks. Toward this purpose, it is considered that a set of UAVs acting as aerial base stations provide secure connectivity between the network and multiple ground nodes. Then, the association of IoT nodes, the 3D positioning of the UAVs and the power allocation of the UAVs are obtained by leveraging game theoretic and convex optimization-based tools with the goal of improving the secrecy of the system. It is shown that the proposed framework obtains better and more efficient secrecy performance over an IoT network than state-of-the-art greedy algorithms for positioning and association
    • …
    corecore