854 research outputs found

    A comparison of crossover operators in neural network feature selection with multiobjective evolutionary algorithms

    Get PDF
    Genetic algorithms are often employed for neural network feature selection. The efficiency of the search for a good subset of features, depends on the capability of the recombination operator to construct building blocks which perform well, based on existing genetic material. In this paper, a commonality-based crossover operator is employed, in a multiobjective evolutionary setting. The operator has two main characteristics: first, it exploits the concept that common schemata are more likely to form useful building blocks; second, the offspring produced are similar to their parents in terms of the subset size they encode. The performance of the novel operator is compared against that of uniform, 1 and 2-point crossover, in feature selection with probabilistic neural networks

    A multi-objective genetic algorithm for the design of pressure swing adsorption

    Get PDF
    Pressure Swing Adsorption (PSA) is a cyclic separation process, more advantageous over other separation options for middle scale processes. Automated tools for the design of PSA processes would be beneficial for the development of the technology, but their development is a difficult task due to the complexity of the simulation of PSA cycles and the computational effort needed to detect the performance at cyclic steady state. We present a preliminary investigation of the performance of a custom multi-objective genetic algorithm (MOGA) for the optimisation of a fast cycle PSA operation, the separation of air for N2 production. The simulation requires a detailed diffusion model, which involves coupled nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA to handle this complex problem has been assessed by comparison with direct search methods. An analysis of the effect of MOGA parameters on the performance is also presented

    Strategies for multiobjective genetic algorithm development: Application to optimal batch plant design in process systems engineering

    Get PDF
    This work deals with multiobjective optimization problems using Genetic Algorithms (GA). A MultiObjective GA (MOGA) is proposed to solve multiobjective problems combining both continuous and discrete variables. This kind of problem is commonly found in chemical engineering since process design and operability involve structural and decisional choices as well as the determination of operating conditions. In this paper, a design of a basic MOGA which copes successfully with a range of typical chemical engineering optimization problems is considered and the key points of its architecture described in detail. Several performance tests are presented, based on the influence of bit ranging encoding in a chromosome. Four mathematical functions were used as a test bench. The MOGA was able to find the optimal solution for each objective function, as well as an important number of Pareto optimal solutions. Then, the results of two multiobjective case studies in batch plant design and retrofit were presented, showing the flexibility and adaptability of the MOGA to deal with various engineering problems

    Pareto-optimality solution recommendation using a multi-objective artificial wolf-pack algorithm

    Get PDF
    In practical applications, multi-objective optimisation is one of the most challenging problems that engineers face. For this, Pareto-optimality is the most widely adopted concept, which is a set of optimal trade-offs between conflicting objectives without committing to a recommendation for decision-making. In this paper, a fast approach to Pareto-optimal solution recommendation is developed. It recommends an optimal ranking for decision-makers using a Pareto reliability index. Further, a mean average precision and a mean standard deviation are utilised to gauge the trend of the evolutionary process. A multi-objective artificial wolf-pack algorithm is thus developed to handle the multi-objective problem using a non-dominated sorting method (MAWNS). This is tested in a case study, where the MAWNS is employed as an optimiser for a widely adopted standard test problem, ZDT6. The results show that the proposed method works valuably for the multi-objective optimisations

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands in product amounts. The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must constitute a basic part of the design problem. Rather than resorting to a traditional probabilistic approach for modeling the imprecision on product demands, this work proposes an alternative treatment by using fuzzy concepts. The design problem is tackled by introducing a new approach based on a multiobjective genetic algorithm, combined wit the fuzzy set theory for computing the objectives as fuzzy quantities. The problem takes into account simultaneous maximization of the fuzzy net present value and of two other performance criteria, i.e. the production delay/advance and a flexibility index. The delay/advance objective is computed by comparing the fuzzy production time for the products to a given fuzzy time horizon, and the flexibility index represents the additional fuzzy production that the plant would be able to produce. The multiobjective optimization provides the Pareto's front which is a set of scenarios that are helpful for guiding the decision's maker in its final choices. About the solution procedure, a genetic algorithm was implemented since it is particularly well-suited to take into account the arithmetic of fuzzy numbers. Furthermore because a genetic algorithm is working on populations of potential solutions, this type of procedure is well adapted for multiobjective optimization

    Optimal advertising campaign generation for multiple brands using MOGA

    Get PDF
    The paper proposes a new modified multiobjective genetic algorithm (MOGA) for the problem of optimal television (TV) advertising campaign generation for multiple brands. This NP-hard combinatorial optimization problem with numerous constraints is one of the key issues for an advertising agency when producing the optimal TV mediaplan. The classical approach to the solution of this problem is the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting the next break to add to the campaign. While the greedy heuristic is capable of generating only a group of solutions that are closely related in the objective space, the proposed modified MOGA produces a Pareto-optimal set of chromosomes that: 1) outperform the greedy heuristic and 2) let the mediaplanner choose from a variety of uniformly distributed tradeoff solutions. To achieve these results, the special problem-specific solution encoding, genetic operators, and original local optimization routine were developed for the algorithm. These techniques allow the algorithm to manipulate with only feasible individuals, thus, significantly improving its performance that is complicated by the problem constraints. The efficiency of the developed optimization method is verified using the real data sets from the Canadian advertising industry

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed
    • …
    corecore