64,139 research outputs found

    On the Foundations of the Brussels Operational-Realistic Approach to Cognition

    Get PDF
    The scientific community is becoming more and more interested in the research that applies the mathematical formalism of quantum theory to model human decision-making. In this paper, we provide the theoretical foundations of the quantum approach to cognition that we developed in Brussels. These foundations rest on the results of two decade studies on the axiomatic and operational-realistic approaches to the foundations of quantum physics. The deep analogies between the foundations of physics and cognition lead us to investigate the validity of quantum theory as a general and unitary framework for cognitive processes, and the empirical success of the Hilbert space models derived by such investigation provides a strong theoretical confirmation of this validity. However, two situations in the cognitive realm, 'question order effects' and 'response replicability', indicate that even the Hilbert space framework could be insufficient to reproduce the collected data. This does not mean that the mentioned operational-realistic approach would be incorrect, but simply that a larger class of measurements would be in force in human cognition, so that an extended quantum formalism may be needed to deal with all of them. As we will explain, the recently derived 'extended Bloch representation' of quantum theory (and the associated 'general tension-reduction' model) precisely provides such extended formalism, while remaining within the same unitary interpretative framework.Comment: 21 page

    Extended statistical modeling under symmetry; the link toward quantum mechanics

    Full text link
    We derive essential elements of quantum mechanics from a parametric structure extending that of traditional mathematical statistics. The basic setting is a set A\mathcal{A} of incompatible experiments, and a transformation group GG on the cartesian product Π\Pi of the parameter spaces of these experiments. The set of possible parameters is constrained to lie in a subspace of Π\Pi, an orbit or a set of orbits of GG. Each possible model is then connected to a parametric Hilbert space. The spaces of different experiments are linked unitarily, thus defining a common Hilbert space H\mathbf{H}. A state is equivalent to a question together with an answer: the choice of an experiment a∈Aa\in\mathcal{A} plus a value for the corresponding parameter. Finally, probabilities are introduced through Born's formula, which is derived from a recent version of Gleason's theorem. This then leads to the usual formalism of elementary quantum mechanics in important special cases. The theory is illustrated by the example of a quantum particle with spin.Comment: The paper has been withdrawn because it is outdate

    A new class of entanglement measures

    Full text link
    We introduce new entanglement measures on the set of density operators on tensor product Hilbert spaces. These measures are based on the greatest cross norm on the tensor product of the sets of trace class operators on Hilbert space. We show that they satisfy the basic requirements on entanglement measures discussed in the literature, including convexity, invariance under local unitary operations and non-increase under local quantum operations and classical communication.Comment: Revised version accepted by J Math Phys, 12 pages, LaTeX, contains Sections 1-5 & 7 of the previous version. The previous Section 6 is now in quant-ph/0105104 and the previous Section 8 is superseded by quant-ph/010501
    • …
    corecore