547 research outputs found

    On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi

    Full text link
    Qualitative calculi play a central role in representing and reasoning about qualitative spatial and temporal knowledge. This paper studies distributive subalgebras of qualitative calculi, which are subalgebras in which (weak) composition distributives over nonempty intersections. It has been proven for RCC5 and RCC8 that path consistent constraint network over a distributive subalgebra is always minimal and globally consistent (in the sense of strong nn-consistency) in a qualitative sense. The well-known subclass of convex interval relations provides one such an example of distributive subalgebras. This paper first gives a characterisation of distributive subalgebras, which states that the intersection of a set of n≥3n\geq 3 relations in the subalgebra is nonempty if and only if the intersection of every two of these relations is nonempty. We further compute and generate all maximal distributive subalgebras for Point Algebra, Interval Algebra, RCC5 and RCC8, Cardinal Relation Algebra, and Rectangle Algebra. Lastly, we establish two nice properties which will play an important role in efficient reasoning with constraint networks involving a large number of variables.Comment: Adding proof of Theorem 2 to appendi

    Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects

    Get PDF
    Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints

    Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects

    Get PDF
    Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints

    Reasoning about Cardinal Directions between Extended Objects

    Get PDF
    Direction relations between extended spatial objects are important commonsense knowledge. Recently, Goyal and Egenhofer proposed a formal model, known as Cardinal Direction Calculus (CDC), for representing direction relations between connected plane regions. CDC is perhaps the most expressive qualitative calculus for directional information, and has attracted increasing interest from areas such as artificial intelligence, geographical information science, and image retrieval. Given a network of CDC constraints, the consistency problem is deciding if the network is realizable by connected regions in the real plane. This paper provides a cubic algorithm for checking consistency of basic CDC constraint networks, and proves that reasoning with CDC is in general an NP-Complete problem. For a consistent network of basic CDC constraints, our algorithm also returns a 'canonical' solution in cubic time. This cubic algorithm is also adapted to cope with cardinal directions between possibly disconnected regions, in which case currently the best algorithm is of time complexity O(n^5)

    An Overview of Polynomially Computable Characteristics of Special Interval Matrices

    Full text link
    It is well known that many problems in interval computation are intractable, which restricts our attempts to solve large problems in reasonable time. This does not mean, however, that all problems are computationally hard. Identifying polynomially solvable classes thus belongs to important current trends. The purpose of this paper is to review some of such classes. In particular, we focus on several special interval matrices and investigate their convenient properties. We consider tridiagonal matrices, {M,H,P,B}-matrices, inverse M-matrices, inverse nonnegative matrices, nonnegative matrices, totally positive matrices and some others. We focus in particular on computing the range of the determinant, eigenvalues, singular values, and selected norms. Whenever possible, we state also formulae for determining the inverse matrix and the hull of the solution set of an interval system of linear equations. We survey not only the known facts, but we present some new views as well

    Complexity Classification Transfer for CSPs via Algebraic Products

    Full text link
    We study the complexity of infinite-domain constraint satisfaction problems: our basic setting is that a complexity classification for the CSPs of first-order expansions of a structure A\mathfrak A can be transferred to a classification of the CSPs of first-order expansions of another structure B\mathfrak B. We exploit a product of structures (the algebraic product) that corresponds to the product of the respective polymorphism clones and present a complete complexity classification of the CSPs for first-order expansions of the nn-fold algebraic power of (Q;<)(\mathbb{Q};<). This is proved by various algebraic and logical methods in combination with knowledge of the polymorphisms of the tractable first-order expansions of (Q;<)(\mathbb{Q};<) and explicit descriptions of the expressible relations in terms of syntactically restricted first-order formulas. By combining our classification result with general classification transfer techniques, we obtain surprisingly strong new classification results for highly relevant formalisms such as Allen's Interval Algebra, the nn-dimensional Block Algebra, and the Cardinal Direction Calculus, even if higher-arity relations are allowed. Our results confirm the infinite-domain tractability conjecture for classes of structures that have been difficult to analyse with older methods. For the special case of structures with binary signatures, the results can be substantially strengthened and tightly connected to Ord-Horn formulas; this solves several longstanding open problems from the AI literature.Comment: 61 pages, 1 figur

    On redundant topological constraints

    Full text link
    © 2015 Elsevier B.V. All rights reserved. Redundancy checking is an important task in the research of knowledge representation and reasoning. In this paper, we consider redundant qualitative constraints. For a set Γ of qualitative constraints, we say a constraint (xRy) in Γ is redundant if it is entailed by the rest of Γ. A prime subnetwork of Γ is a subset of Γ which contains no redundant constraints and has the same solution set as Γ. It is natural to ask how to compute such a prime subnetwork, and when it is unique. We show that this problem is in general intractable, but becomes tractable if Γ is over a tractable subalgebra S of a qualitative calculus. Furthermore, if S is a subalgebra of the Region Connection Calculus RCC8 in which weak composition distributes over nonempty intersections, then Γ has a unique prime subnetwork, which can be obtained in cubic time by removing all redundant constraints simultaneously from Γ. As a by-product, we show that any path-consistent network over such a distributive subalgebra is minimal and globally consistent in a qualitative sense. A thorough empirical analysis of the prime subnetwork upon real geographical data sets demonstrates the approach is able to identify significantly more redundant constraints than previously proposed algorithms, especially in constraint networks with larger proportions of partial overlap relations

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work
    • …
    corecore