16,229 research outputs found

    A New 3-DoF Planar Parallel Manipulator with Unlimited Rotation Capability

    Get PDF
    International audienceMost of three-degree-of-freedom (3-DoF) planar parallel manipulators encountered today have a common disadvantage that is their low rotational capability. However, for many industrial applications, by example in automated assembly systems, cutting machines, simulators, or micro-motion manipulators, a high rotation capability is needed. To overcome such a difficulty, this paper focuses its attention on the proposal of a new 3-DoF planar parallel manipulator capable of high rotational capability. Firstly, structure and mobility of the suggested manipulator are discussed. Then the forward and inverse kinematic problems are analyzed, as well as it is disclosed its singular configurations. The shaking force and shaking moment balancing are also considered. The proposed design concept is illustrated by a driven demonstrator which is a first model of the suggested manipulator

    Kinematic and dynamic analysis of spatial six degree of freedom parallel structure manipulator

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2003Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishviii, 86 leavesThis thesis covers a study on kinematic and dynamic analysis of a new type of spatial six degree of freedom parallel manipulator. The background for structural synthesis of parallel manipulators is also given. The structure of the said manipulator is especially designed to cover a larger workspace then well-known Stewart Platform and its derivates. The main point of interest for this manipulator is its hybrid actuating system, consisting of three revolute and three linear actuators.Kinematic analysis comprises forward and inverse displacement analysis. Screw Theory and geometric constraint considerations were the main tools used. While it was possible to derive a closed-form solution for the inverse displacement analysis, a numerical approach was used to solve the problem of forward displacement analysis. Based on the results of the kinematic analysis, a rough workspace study of the manipulator is also accomplished. On the dynamics part, attention has been given on inverse dynamics problem using Lagrange-Euler approach.Both high and lower level software were heavily utilized. Also computer software called .CASSoM. and .iMIDAS. are developed to be used for structural synthesis and inverse displacement analysis. The major contribution of the study to the scientific community is the proposal of a new type of parallel manipulator, which has to be studied extensively regarding its other interesting properties

    Design and Control of an In-Parallel Pneumatically-Actuated Manipulator

    Get PDF
    The design and control of an in-parallel, pneumatically actuated manipulator is presented. In-parallel manipulators offer superior dynamic characteristics because of their high stiffness, low inertia, and potential for direct drive actuation. In this thesis, the three degree of freedom tripod manipulator is studied. The three degrees of freedom of the manipulator are exactly those that are required for force control perpendicular to a surface. These degrees of freedom are translations along the approach direction and rotations about the axes perpendicular to the approach direction. This body of research can be grouped into three parts. First the area of force control is examined with two purposes in mind, improving pneumatic force control, and understanding how force control has been traditionally implemented and the reasons for its limitations. Next, the improvement of the response of the mechanism and the implementation of different force control schemes are investigated. To improve the response of the system, shorter transmission lengths and an inner pressure feedback loop are added. Position control, force control, stiffness/compliance control, and impedance control, are all investigated, Lastly, a discussion of the advantages and possible uses of this mechanism is presented. The advantage of the parallel mechanism is the ability to regulate the force perpendicular to the surface. Thus, the mechanism can control the force perpendicular to the surface, while an arm attached to the mechanism can control the position of the end effector. This mechanism thus allows the hybrid position and force control problem to be decoupled. Obvious uses for applying a force perpendicular to a surface are tasks such as deburring or polishing. Another possible use could be peg insertion; a new design for peg insertion will be discussed. Lastly, this mechanism could be used as an ankle for a walking machine or a writ for a serial robot. The mechanism can adjust for unforeseen impacts and allow the system to be used in an unstructured environment

    Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator

    Full text link
    "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final versĂ­on of the article as published in the Mechanics Based Design of Structures and Machines 2018 [copyright Taylor & Francis], available online at: https://www.tandfonline.com/doi/10.1080/15397734.2017.1355249."[EN] Although parallel manipulators started with the introduction of architectures with six degrees of freedom, a vast number of applications require less than six degrees of freedom. Consequently, scholars have proposed architectures with three and four degrees of freedom, but relatively few four degrees of freedom parallel manipulators have become prototypes, especially of the two rotation and two translation motion types. In this article, we explain the mechatronics design, prototype, and control architecture design of a four degrees of freedom parallel manipulators with two rotation and two translation motions. We chose to design a four degrees of freedom manipulator based on the motion needed to complete the tasks of lower limb rehabilitation. To the author's best knowledge, parallel manipulators between three and six degrees of freedom for rehabilitation of lower limb have not been proposed to date. The developed architecture enhances the three minimum degrees of freedom required by adding a four degrees of freedom, which allows combinations of normal or tangential efforts in the joints, or torque acting on the knee. We put forward the inverse and forward displacement equations, describe the prototype, perform the experimental setup, and develop the hardware and control architecture. The tracking accuracy experiments from the proposed controller show that the manipulator can accomplish the required application.The authors wish to thank the Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial funding of this study under project DPI2013-44227-R. We also want to thank the Fondo Nacional de Ciencia, Tecnologia e Innovacion (FONACIT-Venezuela) for its financial support under the project No. 2013002165.VallĂ©s Miquel, M.; Araujo-GĂłmez, P.; Mata Amela, V.; Valera FernĂĄndez, Á.; DĂ­az-RodrĂ­guez, M.; Page Del Pozo, AF.; Farhat, N. (2018). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines. 46(4):425-439. https://doi.org/10.1080/15397734.2017.1355249S425439464Araujo-GĂłmez, P., DĂ­az-Rodriguez, M., Mata, V., Valera, A., & Page, A. (2016). Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation. CISM International Centre for Mechanical Sciences, 303-310. doi:10.1007/978-3-319-33714-2_34Bruyninckx, H., Soetens, P., Issaris, P., Leuven, K. (2002). The Orocos Project. http://www.orocos.org.Cao, R., Gao, F., Zhang, Y., Pan, D., & Chen, W. (2014). A New Parameter Design Method of a 6-DOF Parallel Motion Simulator for a Given Workspace. Mechanics Based Design of Structures and Machines, 43(1), 1-18. doi:10.1080/15397734.2014.904234Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542Cazalilla, J., VallĂ©s, M., Valera, Á., Mata, V., & DĂ­az-RodrĂ­guez, M. (2016). Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments. Mechanics Based Design of Structures and Machines, 44(1-2), 16-31. doi:10.1080/15397734.2015.1030679Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242Clavel, R. (1988). A Fast Robot with Parallel Geometry. Proc. Int. Symposium on Industrial Robots, Lausanne, Switzerland, 91–100.DĂ­az, I., Gil, J. J., & SĂĄnchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011, 1-11. doi:10.1155/2011/759764DĂ­az-RodrĂ­guez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007Escamilla, R. F., MacLeod, T. D., Wilk, K. E., Paulos, L., & Andrews, J. R. (2012). Cruciate ligament loading during common knee rehabilitation exercises. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(9), 670-680. doi:10.1177/0954411912451839Gan, D., Dai, J. S., Dias, J., Umer, R., & Seneviratne, L. (2015). Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029957Garage, W. (2009). Robot Operating System. www.ros.org. Accessed date: August 2nd, 2017.Girone, M., Burdea, G., Bouzit, M., Popescu, V., & Deutsch, J. E. (2001). Autonomous Robots, 10(2), 203-212. doi:10.1023/a:1008938121020Gough, V., Whitehall, S. (1962). Universal Tyre Test Machine. Proceedings 9th Int. Technical Congress FISITA, London, vol. 117, 117–135.Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986Lee, K.-M., & Arjunan, S. (1992). A Three Degrees of Freedom Micro-Motion In-Parallel Actuated Manipulator. Precision Sensors, Actuators and Systems, 345-374. doi:10.1007/978-94-011-1818-7_9Li, Y., & Xu, Q. (2007). Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation. IEEE/ASME Transactions on Mechatronics, 12(3), 265-273. doi:10.1109/tmech.2007.897257Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272-294. doi:10.1016/j.mechmachtheory.2017.03.001Ortega, R., & Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial. Automatica, 25(6), 877-888. doi:10.1016/0005-1098(89)90054-xPierrot, F., Company, O. (1999). H4: A New Family of 4 DoF Parallel Robots. Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Georgia, USA, 508–513.Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7Rastegarpanah, A., Saadat, M., & Borboni, A. (2016). Parallel Robot for Lower Limb Rehabilitation Exercises. Applied Bionics and Biomechanics, 2016, 1-10. doi:10.1155/2016/8584735Stewart, D. (1965). A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers, 180(1), 371-386. doi:10.1243/pime_proc_1965_180_029_02VallĂ©s, M., Cazalilla, J., Valera, Á., Mata, V., Page, Á., & DĂ­az-RodrĂ­guez, M. (2015). A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica, 35(10), 1939-1957. doi:10.1017/s0263574715000120VallĂ©s, M., DĂ­az-RodrĂ­guez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic Development and Dynamic Control of a 3-DOF Parallel Manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. doi:10.1080/15397734.2012.687292Xu, W. L., Pap, J.-S., & Bronlund, J. (2008). Design of a Biologically Inspired Parallel Robot for Foods Chewing. IEEE Transactions on Industrial Electronics, 55(2), 832-841. doi:10.1109/tie.2007.909067Yoon, J., Ryu, J., & Lim, K.-B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(S1), S15-S33. doi:10.1002/rob.20150Zarkandi, S. (2011). Kinematics and Singularity Analysis of a Parallel Manipulator with Three Rotational and One Translational DOFs. Mechanics Based Design of Structures and Machines, 39(3), 392-407. doi:10.1080/15397734.2011.55914

    Design and Analysis of a Cable-Driven Test Apparatus for Flapping-Flight Research

    Get PDF
    The biology, physiology, kinematics, and aerodynamics of insect flight have been a longstanding fascination for biologists and engineers. The former three are easily obtained through the observation of the organic species. The latter though, is very difficult to study in this fashion. In many cases, aerodynamic forces and fluid-body interactions can be simulated with computational fluid dynamics; another option is to use dynamically-scaled, experimental set-ups to measure physically these values. An archetypal, experimental set-up may include one or two scaled wings, where each wing is actuated to achieve upwards of three degrees of freedom. The three degrees of freedom correspond biologically to the stroke, deviation, and rotation motions of real insects. The wing modules may be fixed to rotate about a central, fourth axis, mimicking the insect body rotation. Alternatively, the wing modules can be fixed to translate in one direction, copying the forward flight pattern of an insect. These experiments usually are performed in a tank of mineral oil, seeded to highlight the fluid\u27s movement. Unfortunately, the current state of experimental apparatuses limit the number and complexity of studiable flight patterns. The goal is to use a subset of robotics called cable-driven parallel manipulators to improve upon and expand the capabilities of these apparatuses. For these robots, rigid links are replaced with tensioned cables and actuated via electric motors. Each cable attaches to the central manipulator platform, similar to other parallel manipulators. Some advantages of a cable-driven design are large position workspaces, low inertia, high manipulator dynamics, large strength-to-weight ratio, and no actuator-error stack-up. Cable manipulators have been researched in the lab and have been deployed commercially, such as at professional sports stadiums. The manipulator uses a standard cuboid frame, with eight winches actuating eight cables. The manipulator platform is a scaled insect body, with each wing capable of three degrees of freedom, and an optimized attachment frame for the cables. The manipulator\u27s workspace for six degrees of freedom was derived from previous works and simulated in MathWorks\u27 MATLAB for a variety of parameterizations. The lead design incorporates a novel, new cable configuration for realizing greater rotational capability over standard cable-driven manipulators. While a standard, Straight cable configuration allows for large translation but almost no rotation, the new Twist cable configuration provides a smaller yet spread out workspace that is sustainable through singular rotations up to at least 45°, as well as simultaneous rotations about multiple axes. Optimal trends for the attachment frame are discerned from comparing a multitude of size permutations for singular rotations. No one attachment frame holds equal rotational potential about all three axes; however, the strengths and weaknesses of an attachment frame easily are adaptable based on the proposed insect maneuver. To showcase the versatility of the apparatus with a 6 in × 2 in × 4 in attachment frame, four different flight maneuvers are analyzed. The first two case studies prove the cable-driven apparatus can combine the individual functions of existing experimental apparatuses: MATLAB simulations show the device can perform a stationary 116° yaw rotation and separately can translate the end effector 32 in along one axis. A third case study investigates a previously published work on an evasive pitching maneuver from a hawkmoth. In the original study, the normally six-degree-of-freedom movement was distilled down to only one-dimensional translation and pitch rotation, such that it could be replicated in the lab. Using the cable-driven apparatus though, it is possible instead to reproduce the generalized, six-degree-of-freedom maneuver. Finally, a conceptual flight pattern is created to demonstrate the unique advantages of the cable-driven apparatus. The flight path models a pitched dive into a banked quarter turn, with a pitched climb upon exiting the turn. The equal necessity and coupling of all degrees of freedom for this maneuver means it cannot be performed on current experimental apparatuses, except for the cable-driven apparatus. This new cable-driven test apparatus, with its unique design and modifications, would improve the capabilities for experimental studies and provide the most realistic set-up for flapping-flight research

    Kinematics and workspace analysis of a 3ppps parallel robot with u-shaped base

    Full text link
    This paper presents the kinematic analysis of the 3-PPPS parallel robot with an equilateral mobile platform and a U-shape base. The proposed design and appropriate selection of parameters allow to formulate simpler direct and inverse kinematics for the manipulator under study. The parallel singularities associated with the manipulator depend only on the orientation of the end-effector, and thus depend only on the orientation of the end effector. The quaternion parameters are used to represent the aspects, i.e. the singularity free regions of the workspace. A cylindrical algebraic decomposition is used to characterize the workspace and joint space with a low number of cells. The dis-criminant variety is obtained to describe the boundaries of each cell. With these simplifications, the 3-PPPS parallel robot with proposed design can be claimed as the simplest 6 DOF robot, which further makes it useful for the industrial applications

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Workspace and Kinematic Analysis of the VERNE machine

    Get PDF
    This paper describes the workspace and the inverse and direct kinematic analysis of the VERNE machine, a serial/parallel 5-axis machine tool designed by Fatronik for IRCCyN. This machine is composed of a three-degree-of-freedom (DOF) parallel module and a two-DOF serial tilting table. The parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. This feature involves (i) a simultaneous combination of rotation and translation for the moving platform, which is balanced by the tilting table and (ii) workspace whose shape and volume vary as a function of the tool length. This paper summarizes results obtained in the context of the European projects NEXT ("Next Generation of Productions Systems")
    • 

    corecore