1,298 research outputs found

    An investigation of pricing strategies within simplex

    Get PDF
    The PRICE step within the revised simplex method for the LP problems is considered in this report. Established strategies which have proven to be computationally efficient are first reviewed. A method based on the internal rate of return is then described. The implementation of this method and the results obtained by experimental investigation are discussed

    On Augmentation Algorithms for Linear and Integer-Linear Programming: From Edmonds-Karp to Bland and Beyond

    Full text link
    Motivated by Bland's linear-programming generalization of the renowned Edmonds-Karp efficient refinement of the Ford-Fulkerson maximum-flow algorithm, we discuss three closely-related natural augmentation rules for linear and integer-linear optimization. In several nice situations, we show that polynomially-many augmentation steps suffice to reach an optimum. In particular, when using "discrete steepest-descent augmentations" (i.e., directions with the best ratio of cost improvement per unit 1-norm length), we show that the number of augmentation steps is bounded by the number of elements in the Graver basis of the problem matrix, giving the first ever strongly polynomial-time algorithm for NN-fold integer-linear optimization. Our results also improve on what is known for such algorithms in the context of linear optimization (e.g., generalizing the bounds of Kitahara and Mizuno for the number of steps in the simplex method) and are closely related to research on the diameters of polytopes and the search for a strongly polynomial-time simplex or augmentation algorithm

    Learning to Pivot as a Smart Expert

    Full text link
    Linear programming has been practically solved mainly by simplex and interior point methods. Compared with the weakly polynomial complexity obtained by the interior point methods, the existence of strongly polynomial bounds for the length of the pivot path generated by the simplex methods remains a mystery. In this paper, we propose two novel pivot experts that leverage both global and local information of the linear programming instances for the primal simplex method and show their excellent performance numerically. The experts can be regarded as a benchmark to evaluate the performance of classical pivot rules, although they are hard to directly implement. To tackle this challenge, we employ a graph convolutional neural network model, trained via imitation learning, to mimic the behavior of the pivot expert. Our pivot rule, learned empirically, displays a significant advantage over conventional methods in various linear programming problems, as demonstrated through a series of rigorous experiments

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems
    • …
    corecore