1,036 research outputs found

    The Third-Order Term in the Normal Approximation for the AWGN Channel

    Full text link
    This paper shows that, under the average error probability formalism, the third-order term in the normal approximation for the additive white Gaussian noise channel with a maximal or equal power constraint is at least 12log⁑n+O(1)\frac{1}{2} \log n + O(1). This matches the upper bound derived by Polyanskiy-Poor-Verd\'{u} (2010).Comment: 13 pages, 1 figur

    Communication under Strong Asynchronism

    Full text link
    We consider asynchronous communication over point-to-point discrete memoryless channels. The transmitter starts sending one block codeword at an instant that is uniformly distributed within a certain time period, which represents the level of asynchronism. The receiver, by means of a sequential decoder, must isolate the message without knowing when the codeword transmission starts but being cognizant of the asynchronism level A. We are interested in how quickly can the receiver isolate the sent message, particularly in the regime where A is exponentially larger than the codeword length N, which we refer to as `strong asynchronism.' This model of sparse communication may represent the situation of a sensor that remains idle most of the time and, only occasionally, transmits information to a remote base station which needs to quickly take action. The first result shows that vanishing error probability can be guaranteed as N tends to infinity while A grows as Exp(N*k) if and only if k does not exceed the `synchronization threshold,' a constant that admits a simple closed form expression, and is at least as large as the capacity of the synchronized channel. The second result is the characterization of a set of achievable strictly positive rates in the regime where A is exponential in N, and where the rate is defined with respect to the expected delay between the time information starts being emitted until the time the receiver makes a decision. As an application of the first result we consider antipodal signaling over a Gaussian channel and derive a simple necessary condition between A, N, and SNR for achieving reliable communication.Comment: 26 page

    Grassmannian Frames with Applications to Coding and Communication

    Get PDF
    For a given class F{\cal F} of uniform frames of fixed redundancy we define a Grassmannian frame as one that minimizes the maximal correlation ∣<fk,fl>∣|< f_k,f_l >| among all frames {fk}k∈I∈F\{f_k\}_{k \in {\cal I}} \in {\cal F}. We first analyze finite-dimensional Grassmannian frames. Using links to packings in Grassmannian spaces and antipodal spherical codes we derive bounds on the minimal achievable correlation for Grassmannian frames. These bounds yield a simple condition under which Grassmannian frames coincide with uniform tight frames. We exploit connections to graph theory, equiangular line sets, and coding theory in order to derive explicit constructions of Grassmannian frames. Our findings extend recent results on uniform tight frames. We then introduce infinite-dimensional Grassmannian frames and analyze their connection to uniform tight frames for frames which are generated by group-like unitary systems. We derive an example of a Grassmannian Gabor frame by using connections to sphere packing theory. Finally we discuss the application of Grassmannian frames to wireless communication and to multiple description coding.Comment: Submitted in June 2002 to Appl. Comp. Harm. Ana

    Refinement of the random coding bound

    Full text link
    An improved pre-factor for the random coding bound is proved. Specifically, for channels with critical rate not equal to capacity, if a regularity condition is satisfied (resp. not satisfied), then for any Ο΅>0\epsilon >0 a pre-factor of O(Nβˆ’12(1βˆ’Ο΅+ρˉRβˆ—))O(N^{-\frac{1}{2}\left( 1 - \epsilon + \bar{\rho}^\ast_R \right)}) (resp. O(Nβˆ’12)O(N^{-\frac{1}{2}})) is achievable for rates above the critical rate, where NN and RR is the blocklength and rate, respectively. The extra term ρˉRβˆ—\bar{\rho}^\ast_R is related to the slope of the random coding exponent. Further, the relation of these bounds with the authors' recent refinement of the sphere-packing bound, as well as the pre-factor for the random coding bound below the critical rate, is discussed.Comment: Submitted to IEEE Trans. Inform. Theor

    Feedback Communication Systems with Limitations on Incremental Redundancy

    Full text link
    This paper explores feedback systems using incremental redundancy (IR) with noiseless transmitter confirmation (NTC). For IR-NTC systems based on {\em finite-length} codes (with blocklength NN) and decoding attempts only at {\em certain specified decoding times}, this paper presents the asymptotic expansion achieved by random coding, provides rate-compatible sphere-packing (RCSP) performance approximations, and presents simulation results of tail-biting convolutional codes. The information-theoretic analysis shows that values of NN relatively close to the expected latency yield the same random-coding achievability expansion as with N=∞N = \infty. However, the penalty introduced in the expansion by limiting decoding times is linear in the interval between decoding times. For binary symmetric channels, the RCSP approximation provides an efficiently-computed approximation of performance that shows excellent agreement with a family of rate-compatible, tail-biting convolutional codes in the short-latency regime. For the additive white Gaussian noise channel, bounded-distance decoding simplifies the computation of the marginal RCSP approximation and produces similar results as analysis based on maximum-likelihood decoding for latencies greater than 200. The efficiency of the marginal RCSP approximation facilitates optimization of the lengths of incremental transmissions when the number of incremental transmissions is constrained to be small or the length of the incremental transmissions is constrained to be uniform after the first transmission. Finally, an RCSP-based decoding error trajectory is introduced that provides target error rates for the design of rate-compatible code families for use in feedback communication systems.Comment: 23 pages, 15 figure
    • …
    corecore