2 research outputs found

    Study of a New Chaotic Dynamical System and Its Usage in a Novel Pseudorandom Bit Generator

    Get PDF
    A new chaotic discrete dynamical system, built on trigonometric functions, is proposed. With intent to use this system within cryptographic applications, we proved with the aid of specific tools from chaos theory (e.g., Lyapunov exponent, attractor’s fractal dimension, and Kolmogorov-Smirnov test) and statistics (e.g., NIST suite of tests) that the newly proposed dynamical system has a chaotic behavior, for a large parameter’s value space, and very good statistical properties, respectively. Further, the proposed chaotic dynamical system is used, in conjunction with a binary operation, in the designing of a new pseudorandom bit generator (PRBG) model. The PRBG is subjected, by turns, to an assessment of statistical properties. Theoretical and practical arguments, rounded by good statistical results, confirm viability of the proposed chaotic dynamical system and newly designed PRBG, recommending them for usage within cryptographic applications

    A New Series of Three-Dimensional Chaotic Systems with Cross-Product Nonlinearities and Their Switching

    No full text
    This paper introduces a new series of three-dimensional chaotic systems with cross-product nonlinearities. Based on some conditions, we analyze the globally exponentially or globally conditional exponentially attractive set and positive invariant set of these chaotic systems. Moreover, we give some known examples to show our results, and the exponential estimation is explicitly derived. Finally, we construct some three-dimensional chaotic systems with cross-product nonlinearities and study the switching system between them
    corecore