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A new chaotic discrete dynamical system, built on trigonometric functions, is proposed. With intent to use this system within
cryptographic applications, we proved with the aid of specific tools from chaos theory (e.g., Lyapunov exponent, attractor’s fractal
dimension, and Kolmogorov-Smirnov test) and statistics (e.g., NIST suite of tests) that the newly proposed dynamical system has a
chaotic behavior, for a large parameter’s value space, and very good statistical properties, respectively. Further, the proposed chaotic
dynamical system is used, in conjunction with a binary operation, in the designing of a new pseudorandom bit generator (PRBG)
model. The PRBG is subjected, by turns, to an assessment of statistical properties. Theoretical and practical arguments, rounded
by good statistical results, confirm viability of the proposed chaotic dynamical system and newly designed PRBG, recommending
them for usage within cryptographic applications.

1. Introduction

Nowadays, more and more, it appears that skilful genesis of
chaos turns out to be a key issue in many technological appli-
cation fields such as engineering,medicine, communications,
information storage, and, with particular importance, cryp-
tography [1–6].

Designing of dynamical systems, intended to be used as
base of cryptosystems, must be done so as to ensure the use
of a set of associated control parameters’ values that leads to
chaos [7–11]. Moreover, the ergodic [12–15] and randomness
properties [16–19] must be confirmed, as a certainty of high
security level of the chaotic dynamical system.

Since 1963, when Lorenz found the first chaotic attractor
in a three-dimensional autonomous system while studying
atmospheric convection [20], chaotification became a very
attractive subject, leading to the development of new chaotic
dynamic systems, for example, [21–25], and new chaos-based
PRBGs, for example, [26–30], whose properties have been
analyzed extensively and thoroughly in research or review
articles and books, for example, [31–36].

Motivated by the extent of previous work, the present
paper aims to present a new chaotic discrete dynamical
system which, furthermore, may be included in the wide
family of PRBGs through a simple, interesting, and yet
complex new PRBG model, based on binary operation.

The rest of this paper is organized as follows. Section 2
presents the design of newly proposed dynamical system,
including its chaotic behavior assessment (as a first step in
system’s evaluation process to establish its suitability within
any cryptographic application). Section 3 showcases the
detailed and comprehensive randomness’ testing process of
sequences generated by the new chaotic dynamical system (as
a second step in system’s evaluation process to establish its
suitability within any cryptographic application). Section 4
presents the designing of a new PRBG scheme (based on
binary operation, which uses previously designed and tested
chaotic dynamical system), including the results of analysis
performed using NIST suite in order to test the randomness
and uniformity of values generated by the new PRBG. Finally,
Section 5 concludes the work carried out.
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Figure 1: Bifurcation diagram of 𝑓𝑝 map (a) and Lyapunov exponent of 𝑓𝑝 map (b).

2. Proposed Discrete Dynamical System and
Its Basic Properties

Newly dynamical system introduced in paper uses (1) [37, 38]
as model for chaos generation. Here, whilst 𝑓 represents a
periodic real map (selected so as to ensure a large phase
space), ℎ represents a bounded real map (which, by an
appropriate selection, restricts the phase space to a closed
interval in which the dynamical system has good chaotic
properties):

𝑥𝑛+1 = ℎ (𝑓 (𝑥𝑛)) . (1)

Therefore, the newly proposed one-dimensional discreet
dynamic system, which is defined with respect to form (1), is
given by (2) or (and), in amore detailed design, by (3). Here, 𝑟
represents the control parameter of the resulted chaotic map,
while arctg (i.e., arctangent function), and ctg (i.e., cotangent
function), respectively, were chosen with respect to the above
affirmations (i.e., the first one restricts the phase space to a
close interval inwhich the dynamical systemhas good chaotic
properties, while the second one ensures a large phase space):

𝑥𝑛+1 = 𝑓𝑝 (𝑥𝑛) , (2)

𝑓𝑝 : [−1, 1] 󳨀→ [−1, 1] , 𝑓𝑝 (𝑥) =
2

𝜋
arctg (ctg (𝑟𝑥)) . (3)

In the following, dynamical behavior of newly proposed
chaotic system is investigated, by both theoretical analysis
and numerical simulation (e.g., by means of Lyapunov expo-
nent, attractor’s geometric shape and fractal structure, and
system’s ergodicity, i.e., Kolmogorov-Smirnov tests, etc.).

2.1. Sensitivity Level to Initial Conditions. The behavior of
the proposed discrete dynamic system (3), in terms of its
evolution over time domain, depends on both the control
parameter 𝑟 and the initial condition 𝑥0. First of all, we
propose stability analysis of fixed points in order to assess
system’s sensitivity level to initial conditions.

𝑓𝑝 map’s fixed points are given by (4), and, according to
the theorem of fixed points [39], 𝑥𝑘 points are attractors if
condition (5) is fulfilled, that is, if the control parameter 𝑟

meets condition (6). Thus, taking into account the fact that
𝑓𝑝map is defined on the interval [−1, 1], there exists only one
fixed point, that is, (7), which is also an attractor:

𝑡𝑘 =
𝜋 (2𝑘 + 1)

2𝑟 + 𝜋
, 𝑘 ∈ Z, (4)

󵄨󵄨󵄨󵄨󵄨𝑓
󸀠

𝑝
(𝑡𝑘)

󵄨󵄨󵄨󵄨󵄨 < 1, 𝑘 ∈ Z, (5)

𝑟 <
𝜋

2
, (6)

𝑡0 =
𝜋

2𝑟 + 𝜋
. (7)

From the above equations, it can be noticed that for any
𝑟 ∈ (0, 𝜋/2), all trajectories that start at initial point 𝑥0
converge, in time, to the attractor point 𝑡0; for any 𝑟 > 𝜋/2,
fixed point 𝑡0 loses its stability, and other instable fixed points
appear.The aforementioned statements are also substantiated
by the bifurcation diagram, namely, the one showcased in
Figure 1(a), which emphasizes the stability of𝑓𝑝’s fixed points
(i.e., for any values of parameter 𝑟, close to 𝜋/2, 𝑓𝑝 has
an instable behavior, and for any values of the parameter
𝑟, higher than 𝜋/2, the map enters into a complete chaotic
regime).The road to chaos of the𝑓𝑝map, with 𝑟 > 𝜋/2, is not
achieved through doubling process of the period, specific to
some chaotic maps, but is induced by existence of a dense set
of periodic orbits, whose periods are in the [−1, 1] interval.
Another tool used to assess 𝑓𝑝’s sensitivity to the initial
conditions is the Lyapunov exponent (8) and, taking into
consideration the fact that orbit {𝑥1, 𝑥2, . . . , 𝑥𝑛} is chaotic if
this exponent is positive, (9) is derived (which is equivalent
to 𝑟 > 𝜋/2, meaning that for any 𝑟 ∈ (𝜋/2, 10)𝑓𝑝’s orbits
are chaotic). Lyapunov exponent, numerically computed [40]
with respect to the parameter 𝑟 within (0, 10) interval, is
shown in Figure 1(b). Consider

𝜆 = lim
𝑛→∞

1

𝑛

𝑛

∑
𝑖=1

ln 󵄨󵄨󵄨󵄨󵄨𝑓
󸀠

𝑝
(𝑥𝑖)

󵄨󵄨󵄨󵄨󵄨

= lim
𝑛→∞

1

𝑛

𝑛

∑
𝑖=1

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−2𝑟

𝜋 sin2𝑟𝑥 (1 + ctg2𝑟𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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Figure 2: Attractor of 𝑓𝑝 map, for 𝑟 = 7.

= ln 2𝑟
𝜋
,

(8)

ln 2𝑟
𝜋
> 0. (9)

2.2. Attractor’s Geometric Shape and Fractal Structure. Anal-
ysis of dynamical system’s attractor’s shape can provide
meaningful information about system behavior in time, for
certain values of its parameters. The attractor of a dynamical
system with a periodic behavior has a regular shape, while
the one corresponding to a chaotic dynamical system has
a complex structure, of fractal type, called strange attractor
[39].

Figure 2 showcases 𝑓𝑝’s attractor, for 𝑟 = 7, where it can
be observed that its shape is irregular, of fractal type, and
complex shaped, in comparison with ones of, for example,
tent or logistic maps (i.e., whose attractors exhibit a regular
shape, i.e., triangle, resp., hyperbola shaped).

Fractal structure of an attractor is indicated by a fractional
value of its fractal dimension, which is a ratio that provides
a statistical index of complexity comparing how in detail a
pattern changes with the scale at which it is measured or,
alternatively, by a measure of the space-filling capacity of
a pattern, telling how a fractal scale is different than the
space in which it is embedded. There are several types of
fractal dimensions, which can be theoretically and empiri-
cally estimated, such as Hausdorff dimension, Minkowski-
Bouligand dimension, box-counting dimension, information
dimension, and correlation dimension [41–44]. Using plots
from Figure 3, we established that the attractor of the 𝑓𝑝
map has a box-counting dimension 𝐷𝑏 = 0.97863 and a
correlation dimension 𝐷𝑐 = 0.97064. Fractional values, of
fractal dimensions previously estimated, allow us to conclude
that the proposedmap has a strange attractor which, by turns,
indicates a chaotic behavior.

2.3. System’s Ergodicity. In this subsection, using Birkhoff ’s
theorem [5, 45] in conjunction with Kolmogorov-Smirnov
test [46, 47], we intend to prove that the proposed dynamical
system is ergodic for 𝑟 > 𝜋/2 (i.e., long-term behavior of 𝑓𝑝’s

orbits is independent from the initial condition, and thus it
may be subjected to a battery of statistical tests).

The Kolmogorov-Smirnov test is applied on two amounts
of independent data (𝑥1, 𝑥2, . . . , 𝑥𝑛) and (𝑦1, 𝑦2, . . . , 𝑦𝑛), cor-
responding to the measurements of two random variables 𝑋
and 𝑌. Random variable 𝑋 is obtained through an 𝑛-times
iteration of 𝑓𝑝 map, for a fixed parameter 𝑟 and for a fixed
initial condition 𝑥0 (namely, 𝑟 > 𝜋/2 and 𝑥0 ∈ [−1, 1]).
Second random variable, that is, 𝑌, is obtained by selecting,
at time 𝑘, the values generated by 𝑛 orbits of the map, arising
from 𝑛 initial seeding points (belonging to [−1, 1] interval)
and same 𝑟 parameter (previously fixed). Moment 𝑘 = 100
is chosen from 𝑓𝑝’s stationary zone, previously established
using Kolmogorov-Smirnov test, as described in [46, 47].

Due to the fact that the random values 𝑋 and 𝑌 corre-
spond to time average of 𝑓𝑝 and space average, respectively,
the purpose of the test is to establish if the two experimental
data sets derive from populations with the same distribution
or not, with respect to Birkhoff ’s theorem. The analysis is
based on distribution functions Fe𝑋 and Fe𝑌, associated with
the experimental independent data sets𝑋 and 𝑌.

Kolmogorov-Smirnov test is applied as follows:

(1) the maximum absolute difference between the two
distribution functions 𝛿 is computed:

𝛿 = max
𝑢

󵄨󵄨󵄨󵄨Fe𝑋 (𝑢) − Fe𝑌 (𝑢)
󵄨󵄨󵄨󵄨 ; (10)

(2) for a significance level 𝛼, Δ 𝛼 is computed (𝛼 rep-
resenting probability law’s quantile, for the random
value Δ); that is, 𝑃(Δ > Δ 𝛼) = 𝛼,

Δ 𝛼 ≅ √
𝑛 + 𝑚

𝑛𝑚
√
1

2
ln 2

𝛼
; (11)

(3) in case of 𝛿 ≤ Δ 𝛼, the hypothesis 𝐻0 is accepted
(i.e., the two random variables 𝑋 and 𝑌 have the
same probability law; in other words, if the absolute
maximum distance between the two distribution
functions Fe𝑋 and Fe𝑌 is lower than a certain accepted
value Δ 𝛼, then it will be decided that the two random
variables 𝑋 and 𝑌 have the same probability law);
otherwise the test rejects 𝐻0 hypothesis (i.e., for the
chosen level, the two sets of experimental data come
from random values with different probability laws).

Kolmogorov-Smirnov test was performed over a
sequence of 𝑛 = 𝑚 = 100.000 samples, with a significance
level set to 𝛼 = 0.05; the decision regarding system’s
ergodicity is based on Monte Carlo analysis (i.e., evaluating
Kolmogorov-Smirnov test’s ability to accept bad data as good
data). The above experiment was repeated 500 times; at the
end of each round, 𝐻0 hypothesis’s acceptance proportion
(which belongs to [0.93, 0.97] interval) was recorded.

Test’s overall results are summarized in Table 1. One can
observe that in case of all values selected for 𝑟 parameter, with
𝑟 ∈ (𝜋/2, 10), the acceptance proportion of 𝐻0 hypothesis
lies within the confidence interval. Thus, ergodicity of the
proposed dynamical system is confirmed (over the entire
interval of interest, for parameter 𝑟).
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Figure 3: 𝑓𝑝’s attractor’s fractal dimensions: box-counting dimension (a) and correlation dimension (b).

Table 1: Results of 𝑓𝑝’s ergodicity property testing.

Experiment
iteration(s) Parameter value KS test value Test result

1–49 — ∈ [0.93, 0.97] PASSED
50 2.805107703154233 0.956 PASSED
51–99 — ∈ [0.93, 0.97] PASSED
100 4.342554676193408 0.950 PASSED
101–149 — ∈ [0.93, 0.97] PASSED
150 5.352537126362448 0.950 PASSED
151–199 — ∈ [0.93, 0.97] PASSED
200 5.930260965351542 0.966 PASSED
201–249 — ∈ [0.93, 0.97] PASSED
250 6.547089923300568 0.940 PASSED
251–299 — ∈ [0.93, 0.97] PASSED
300 7.300182966818144 0.966 PASSED
301–349 — ∈ [0.93, 0.97] PASSED
350 7.710976298365504 0.960 PASSED
351–399 — ∈ [0.93, 0.97] PASSED
400 8.299998361920006 0.950 PASSED
401–449 — ∈ [0.93, 0.97] PASSED
450 9.127429903281719 0.964 PASSED
451–499 — ∈ [0.93, 0.97] PASSED
500 9.858890151572155 0.952 PASSED

Based on numerical results previously obtained, using
instruments from the chaos theory, we can conclude that 𝑓𝑝
map has a chaotic behavior, without intermittent scenarios,
for any combination between the parameter 𝑟 ∈ (𝜋/2, 10) and
the initial seeding point 𝑥0 ∈ [−1, 1].

The chaotic behavior is a necessary but not sufficient
condition to allow usage of the proposed dynamic system
within cryptographic applications. System’s security level,

against some statistical cryptanalytic attacks, is assessed after
a statistical analysis of the randomness of values generated.
There are several options available for analyzing randomness
of a newly developed pseudorandom bit generator (PRBG),
as it will be revealed in the following section.

3. Randomness Analysis of the Proposed
Chaotic Discrete Dynamical System

In order to assess PRBG’s statistical properties (i.e., its true
randomness and implicit suitability within cryptographic
applications; see e.g., [48–52], etc.), different testing tools
such as CrypTool and VRA (for basic statistical measures’
quantification), respectively NIST [53] and DIEHARD [54]
standard tests batteries (for high end quantitative and qual-
itative assessment) were used. Operating methodology, for
each of the above tests, and obtained results are presented and
discussed in the following subsections.

Chaotic cryptography deals with real numbers, so, in
order to proceed and apply the battery of the statistical tests
aforementioned, we have to apply a computational method
to transform a chaotic sequence of real numbers into a
bitstream. The discretization method that we used consisted
in the extraction of the fractional parts of the generated
subunitary real numbers.

3.1. CrypTool Analysis. CrypTool was used to compute the
occurrence frequencies of any binary substring, composed of
𝑛 symbols (i.e., the 𝑛-grams), over the flow of bits generated
with the proposed PRBG. For true random bitstreams, it
is expected that each entry within the 𝑛-gram has the
same probability of occurrence. The 𝑛-gram statistics were
performed over 1.000 randomly chosen binary sequences,
each sequence being generated using different initial seeding
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Table 2: PRBG’s 𝑛-gram reports.

𝑛-gram’s
order Substring Frequency (%) |Δ|

Histogram
(𝑛 = 1)

0 50.0734 0.0734
1 49.9266 0.0734

Digram
(𝑛 = 2)

00 24.9605 0.0395
01 24.9660 0.0340
10 24.9660 0.0340
11 25.1074 0.1074

Trigram
(𝑛 = 3)

000 12.4899 0.0101
001 12.4706 0.0294
010 12.4293 0.0707
011 12.5367 0.0367
100 12.4705 0.0295
101 12.4954 0.0046
110 12.5367 0.0367
111 12.5707 0.0707

4-gram
(𝑛 = 4)

0000 6.2240 0.0260
0001 6.2659 0.0159
0010 6.2015 0.0485
0011 6.2691 0.0191
0100 6.2085 0.0415
0101 6.2208 0.0292
0110 6.2568 0.0068
0111 6.2799 0.0299
1000 6.2658 0.0158
1001 6.2047 0.0453
1010 6.2278 0.0222
1011 6.2676 0.0176
1100 6.2620 0.0120
1101 6.2746 0.0246
1110 6.2799 0.0299
1111 6.2908 0.0408

12-gram
(𝑛 = 12)

000000000000 0.0265 0.0020
— ≈0.0244 ≈0

111111111111 0.0284 0.0039

points and of 𝑖 = 1.000.000 bits in length; overall results are
presented in Table 2.

It can be observed that the deviation from ideal value,
of each 𝑛-gram’s entry, is under 0.1%. Thus, PRBG’s 𝑛-gram
reports not only do not emphasize the dominant presence of
any binary substring (i.e., in terms of frequency of use) [55,
56], but they also highlight a uniform system dynamics (i.e.,
in terms of the time evolution of 𝑓𝑝’s trajectories). Positive
results obtained at this point guide us to perform the next
statistical analysis.

3.2. Visual Recurrence Analysis. A RP (i.e., Recurrence Plot)
holds important insights into the time evolution of 𝑓𝑝’s
trajectories because typical patterns in RPs are linked to

specific system behavior [57]. Yet, without proper settings
of analysis’ parameters, any RP is just a simple image,
completely devoid of information. Thus, to obtain as much
information, suitable embedding dimension and adequate
time delay must be chosen.With the aid of AMI (i.e., Average
Mutual Information) and FNN (i.e., FalseNearest Neighbors)
toolboxes (included in VRA’s statistical test suite), these
parameters can be correctly set to the optimal value [58].
AMI and FNN were performed on binary sequences, each
of 𝑖 = 1.000.000 bits in length (generated with 100 randomly
chosen seeds); corresponding graphs are presented in Figures
4(a) and 4(b), respectively. Analyzing the two graphs, first
AMI minimum and Optimal Global Embedding Dimension
(OGED) are found: time delay 𝑑 = 3 and embedding
dimension 𝑚 = 3. With these two parameters bitstream’s
RPI (i.e., Recurrence Plot Image) is computed, as shown in
Figure 4(c).

Lack in clear patterns, within the RPI, indicates that con-
secutive samples in bitstream’s structure are much far apart
and uncorrelated. More than that, RPI’s homogeneity along
the major diagonal and its irregular distribution emphasizes
a stationary, mostly stochastic behavior (i.e., intrinsically
nondeterministic, nonintermittent, and sporadic), of the
system that has generated the bitstream and, namely, a true
random process (i.e., random binary strings).

VRA, through its embedded RQA (i.e., Recurrence
Quantification Analysis) tool, also provides other additional
measures (e.g., entropy, mean, percentage of recurrence and
of determinism, etc.); some of them, themost important ones,
are quantified in Table 3. One can notice that all the measures
have values close to ideal [59].

Despite the fact that skewness has a negative value (i.e.,
indicating that the tail on the left side of the probability
density function is longer than the right side and the bulk
of the values lie to the right of the mean), being close to
zero indicates that the values are relatively evenly distributed
on both sides of the mean, typically (but not necessarily)
implying a symmetric distribution [60]. At the same time,
Kurtosis’s high-level and negative value denotes a platykurtic
distribution (i.e., data set with flatter peak around its mean,
which causes thin tails within the distribution and low level
of data fluctuation) [61].

Good general statistical properties revealed with the aid
of VRA (either visually—evaluation of RPI’s structural prop-
erties or through different specific measures evaluation—
RQA), highlights randomness of bitstreams generated using
the proposed PRBG function, thus allowing advancement to
other statistical test suites.

3.3. NIST Statistical Testing. For the numerical experimenta-
tions of the proposed pseudorandom bit generator, we have
generated 𝑚 = 2.000 different binary sequences from 500
randomly chosen seeds, each sequence having a length of
𝑛 = 1.000.000 bits, and we have computed the 𝑝-value
corresponding to each sequence for all the 15 tests of theNIST
suite. The significance level of each test in NIST is set to 1%,
which means that 99% of test samples pass the tests if the
random numbers are truly random. The acceptance region
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Figure 4: PRBG’s visual recurrence analysis: AMI graph (a), FNN graph (b), and recurrence plot (c).

Table 3: PRBG’s general statistics.

Mean Variance Standard deviation Skewness Kurtosis Entropy
0.5007 0.2500 0.5000 −0.0029 −1.9999 0.9999

of the passing ratio is given by (12), where 𝑚 represents the
number of samples tested and 𝑝 = 1 − 𝛼 is the probability of
passing each test:

[

[

𝑝 − 3√
𝑝 (1 − 𝑝)

𝑚
, 𝑝 + 3√

𝑝 (1 − 𝑝)

𝑚
]

]

. (12)

For 𝑚 = 2000 and the probability 𝑝 = 0.99 (corre-
sponding to the significance level 𝛼 = 0.01), we obtained the
confidence interval [0.983, 0.996]. In the second column of
Table 4, we have summarized the results obtained after apply-
ing nonparameterized and parameterized tests of the NIST
suite on the binary sequences produced by the proposed

pseudorandom bit generator. The computed proportion for
each test lies inside the confidence interval. Hence, the
tested binary sequences generated by the proposed PRBG
are random with respect to all tests of NIST suite. If tested
sequences are truly random, then 𝑝-values are expected to
appear uniform in the interval [0, 1). NIST recommends
to apply the 𝜒2-test in which the interval [0, 1) is divided
into 10 subintervals. Defining 𝐹𝑖 as number of occurrences
of the 𝑝-value in 𝑖th interval, then the 𝜒2 statistic is (13).
NIST recommends setting its significance level to 0.01%,
so the acceptance region of statistics has the value 𝜒2 ≤
33.72. A 𝑝-value that corresponds to uniformity of 𝑝-values
is calculated as in (14), so it must be greater than 0.0001
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Table 4: NIST tests’ results.

Test name Passing ratio of the test Uniformity 𝑝-value Test result
Frequency 0.992 0.602803 PASSED
Block frequency 0.990 0.748891 PASSED
Cumulative sums 0.991 0.090388 PASSED
Runs 0.990 0.939005 PASSED
Longest run 0.989 0.592443 PASSED
Rank 0.991 0.840367 PASSED
FFT 0.989 0.242363 PASSED
Nonoverlapping template 0.983 0.761719 PASSED
Overlapping template 0.983 0.230755 PASSED
Universal 0.987 0.050629 PASSED
Approximate entropy 0.988 0.959347 PASSED
Random excursions 0.987 0.614382 PASSED
Random excursions variant 0.984 0.830939 PASSED
Serial 0.986 0.209392 PASSED
Linear complexity 0.989 0.764655 PASSED

to ensure that the 𝑝-values could be considered uniformly
distributed.The results from the third column of Table 4 lead
us to the conclusion that 𝑝-values, for each statistical test, are
uniformly distributed:

𝜒2 =
10

∑
𝑖=1

(𝐹𝑖 − 𝑚/10)
2

(𝑚/10)
, (13)

igamc(9
2
,
𝜒2

2
) . (14)

Themethod to calculate the passing ratio of total test and
the uniformity 𝑝-value of total test samples follows the same
methodology described above. In this case, we considered the
number of samples 𝑚 = 30.000, so the acceptance region
is [0.988, 0.992]. For the passing ratio of the total test we
obtained the value 0.988, and the 𝑝-value corresponding to
the uniformity of 𝑝-values from the total test was 0.294808,
so the proposed map has perfect cryptographic properties.

4. Proposed PRBG and Its Statistical Testing

Most chaos-based PRNGs (and, implicitly, their subsequent
PRBGs) are based on a single chaotic system (e.g., [25–29,
52]) and generate the randomnumbers (resp., the bitstreams)
directly from its orbit. These types of PRNGs/PRBGs are
potentially insecure, since the output valuesmay expose some
information about their underlying chaotic system [62]. To
overcome this difficulty, a series of pseudorandom number
(bit) generators based on a couple of chaotic systemhave been
proposed (e.g., [63–67]). In the following, we present a novel
PRNG/PRBG model, based on two chaotic maps coupled
using a binary operation.

We consider two one-dimensional chaotic maps (e.g., as
the previously designed model, i.e., (3)) defined as follows:

𝑓1 : [−1, 1] 󳨀→ [−1, 1] , 𝑓1 (𝑥, 𝑟1) =
2

𝜋
arctg (ctg (𝑟1𝑥)) ,

𝑓2 : [−1, 1] 󳨀→ [−1, 1] , 𝑓2 (𝑥, 𝑟2) =
2

𝜋
arctg (ctg (𝑟2𝑥)) ,

(15)

where 𝑥1
0
, 𝑥2
0
are the initial conditions, 𝑟1, 𝑟2 are the control

parameters, and 𝑥1
𝑖
, 𝑥2
𝑖
are the two orbits obtained by

recurrences 𝑥1
𝑖+1

= 𝑓1(𝑥
1

𝑖
, 𝑟1), 𝑥

2

𝑖+1
= 𝑓2(𝑥

2

𝑖
, 𝑟2), for any 𝑖 ∈

{0, 1, 2, . . .}.
Also, we consider the binary operation given by the

formula

𝑎 ∗ 𝑏 =
𝑎 + 𝑏

1 − 𝑎 ⋅ 𝑏
, (16)

where 𝑎, 𝑏 ∈ [−1, 1].
The output {𝑦0, 𝑦1, 𝑦2, . . .} of the proposed PRNG is

obtained applying the binary operation (16) to the chaotic
maps 𝑓1 and 𝑓2 defined by (15); thus,

𝑦𝑖 = 𝑓1 (𝑥
1

𝑖
, 𝑟1) ∗ 𝑓2 (𝑥

2

𝑖
, 𝑟2) =

𝑓1 (𝑥
1

𝑖
, 𝑟1) + 𝑓2 (𝑥

2

𝑖
, 𝑟2)

1 − 𝑓1 (𝑥
1
𝑖
, 𝑟1) ⋅ 𝑓2 (𝑥

2
𝑖
, 𝑟2)

(17)

for any 𝑖 ∈ {0, 1, 2, . . .} and (𝑥1
0
, 𝑟1, 𝑥
2

0
, 𝑟2) ∈ [−1, 1] × [1, 10] ×

[−1, 1] × [1, 10] is the seed of the proposed PRNG.
The real numbers obtained using the proposed PRNG

were discretized extracting their fractional parts in order to
apply the NIST statistical tests. For the numerical experimen-
tations on the proposed pseudorandom numbers generator,
we have generated 2.000 different binary sequences (sample
size 𝑚 = 2.000). Each sequence, with one million bits in
length, has been generated from a randomly chosen seed
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Table 5: NIST tests’ results.

Test name Passing ratio of the test Uniformity 𝑝-value Test result
Frequency 0.991 0.045971 PASSED
Block frequency 0.991 0.653773 PASSED
Cumulative sums 0.990 0.035876 PASSED
Runs 0.991 0.235589 PASSED
Longest run 0.987 0.937919 PASSED
Rank 0.994 0.221898 PASSED
FFT 0.988 0.160357 PASSED
Nonoverlapping template 0.986 0.036592 PASSED
Overlapping template 0.985 0.316808 PASSED
Universal 0.989 0.703417 PASSED
Approximate entropy 0.991 0.129620 PASSED
Random excursions 0.992 0.806491 PASSED
Random excursions variant 0.985 0.885727 PASSED
Serial 0.987 0.737475 PASSED
Linear complexity 0.990 0.325206 PASSED

(𝑥1
0
, 𝑟1, 𝑥
2

0
, 𝑟2), and for each we computed the 𝑝-value cor-

responding to the NIST tests. In Table 5 we have sum-
marized the results obtained after implementing nonpa-
rameterized and parameterized tests of NIST suite on the
binary sequences produced by the proposed pseudorandom
numbers generator.

It can be seen that the computed proportion for each test
lies inside the confidence interval; hence, the tested binary
sequences generated by the proposed PRBG are randomwith
respect to all the 16 tests of NIST suite.

5. Conclusions

Development of new chaotic dynamic systems, which meet
the current demands of security, is a present research direc-
tion in the field of cryptography. The main objective is to
obtain a large key space, induced by the control parameter
and (or) initial conditions, for which the dynamic system is
in chaotic regime, is ergodic, and has a uniform distribution
of the values generated.

With respect to the aforementioned ideas, in this paper
we have designed a new one-dimensional chaotic dynamic
system that meets these requirements.

Moreover, a larger key space than the one of the known
chaotic maps (e.g., logistic, tent, Hénon, etc.) was achieved,
and, despite the fact that the implementation of trigonometric
maps is little slower than the ones of other kinds of maps
(e.g., polynomial, exponential, etc.), we consider that the
advantage of a larger key space induced by their usage is a
good compromise (i.e., a win-win situation).

Using specific mathematical and numerical tools from
chaos theory and statistics, we proved that the proposed
chaotic dynamic system has very good cryptographic prop-
erties. The proposed map was used in a new innovative way
to design a new PRNG/PRBGmodel, based on a well-known
binary operation.

We have performed an exhaustive testing process of
the randomness of the generated binary sequences using

the NIST suite to prove the viability of the proposed
PRNG/PRBG.
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and A. S. Gómez, Eds., pp. 37–42, Universitat Rovira I Virgili,
Tarragona, Spain, 2010.

[9] S. Li, X. Mou, B. L. Yang, Z. Ji, and J. Zhang, “Problems with
a probabilistic encryption scheme based on chaotic systems,”
International Journal of Bifurcation and Chaos, vol. 13, no. 10,
pp. 3063–3077, 2003.



Mathematical Problems in Engineering 9

[10] S. Li, X. Mou, Y. Cai, Z. Ji, and J. Zhang, “On the security of a
chaotic encryption scheme: problems with computerized chaos
in finite computing precision,” Computer Physics Communica-
tions, vol. 153, no. 1, pp. 52–58, 2003.

[11] G. Alvarez and S. Li, “Some basic cryptographic requirements
for chaos-based cryptosystems,” International Journal of Bifur-
cation and Chaos, vol. 16, no. 8, pp. 2129–2151, 2006.

[12] J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and
strange attractors,”Reviews ofModern Physics, vol. 57, no. 3, part
1, pp. 617–656, 1985.

[13] L.-S. Young, “Ergodic theory of chaotic dynamical systems,” in
From Topology to Computation: Proceedings of the Smalefest, pp.
201–226, Springer, New York, NY, USA, 1993.
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