3,244 research outputs found

    Controlled secure social cloud data sharing based on a novel identity based proxy re-encryption plus scheme

    Get PDF
    Currently we are witnessing a rapid integration of social networks and cloud computing, especially on storing social media contents on cloud storage due to its cheap management and easy accessing at any time and from any place. However, how to securely store and share social media contents such as pictures/videos among social groups is still a very challenging problem. In this paper, we try to tackle this problem by using a new cryptographic primitive: identity based proxy re-encryption plus (IBPRE ), which is a variant of proxy re-encryption (PRE). In PRE, by using re-encryption keys, a ciphertext computed for Alice can be transferred to a new one for Bob. Recently, the concept of PRE plus (PRE) was introduced by Wang et al. In PRE, all the algorithms are almost the same as traditional PRE, except the re-encryption keys are generated by the encrypter instead of the delegator. The message-level based fine-grained delegation property and the weak non-transferable property can be easily achieved by PRE , while traditional PRE cannot achieve them. Based on the 3-linear map, we first propose a new IBE scheme and a new IBPRE scheme, we prove the security of these schemes and give the properties and performance analysis of the new IBPRE scheme. Finally, we propose a new framework based on this new primitive for secure cloud social data sharingPeer ReviewedPostprint (author's final draft

    Efficient Hybrid Proxy Re-Encryption for Practical Revocation and Key Rotation

    Get PDF
    We consider the problems of i) using public-key encryption to enforce dynamic access control on clouds; and ii) key rotation of data stored on clouds. Historically, proxy re-encryption, ciphertext delegation, and related technologies have been advocated as tools that allow for revocation and the ability to cryptographically enforce \emph{dynamic} access control on the cloud, and more recently they have suggested for key rotation of data stored on clouds. Current literature frequently assumes that data is encrypted directly with public-key encryption primitives. However, for efficiency reasons systems would need to deploy with hybrid encryption. Unfortunately, we show that if hybrid encryption is used, then schemes are susceptible to a key-scraping attack. Given a proxy re-encryption or delegation primitive, we show how to construct a new hybrid scheme that is resistant to this attack and highly efficient. The scheme only requires the modification of a small fraction of the bits of the original ciphertext. The number of modifications scales linearly with the security parameter and logarithmically with the file length: it does not require the entire symmetric-key ciphertext to be re-encrypted! Beyond the construction, we introduce new security definitions for the problem at hand, prove our construction secure, discuss use cases, and provide quantitative data showing its practical benefits and efficiency. We show the construction extends to identity-based proxy re-encryption and revocable-storage attribute-based encryption, and thus that the construction is robust, supporting most primitives of interest

    Identity based proxy re-encryption scheme (IBPRE+) for secure cloud data sharing

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In proxy re-encryption (PRE), a proxy with re-encryption keys can transfer aciphertext computed under Alice's public key into a new one, which can be decrypted by Bob only with his secret key. Recently, Wang et al. introduced the concept of PRE plus (PRE+) scheme, which can be seen as the dual of PRE, and is almost the same as PRE scheme except that the re-encryption keys are generated by the encrypter. Compared to PRE, PRE+ scheme can easily achieve two important properties: first, the message-level based fine-grained delegation and, second, the non-transferable property. In this paper, we extend the concept of PRE+ to the identity based setting. We propose a concrete IBPRE+ scheme based on 3-linear map and roughly discuss its properties. We also demonstrate potential application of this new primitive to secure cloud data sharing.Peer ReviewedPostprint (author's final draft

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Non-transferable unidirectional proxy re-encryption scheme for secure social cloud storage sharing

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Proxy re-encryption (PRE), introduced by Blaze et al. in 1998, allows a semi-trusted proxy with the re-encryption key to translatea ciphertext under the delegator into another ciphertext, which can be decrypted by the delegatee. In this process, the proxy is required to know nothing about the plaintext. Many PRE schemes have been proposed so far, however until now almost all the unidirectional PRE schemes suffer from the transferable property. That is, if the proxy and a set of delegatees collude, they can re-delegate the delegator's decryption rights to the other ones, while the delegator has no agreement on this. Thus designing non-transferable unidirectional PRE scheme is an important open research problem in the field. In this paper, we tackle this open problem by using the composite order bilinear pairing. Concretely, we design a non-transferable unidirectional PRE scheme based on Hohenberger et al.'s unidirectional PRE scheme. Furthermore, we discuss our scheme's application to secure cloud storage, especially for sharing private multimedia content for social cloud storage users.Peer ReviewedPostprint (author's final draft
    • …
    corecore