7 research outputs found

    Remote service usage through SIP with multimedia access as a use case

    Get PDF
    The IP Multimedia Subsystem is under deployment, as an IP-based service control and access infrastructure, but how it interconnects with residential appliances is currently unclear. With IMS access for the residential appliances they can be used as both service consumers and service providers. In this paper we present a protocol which allows residential services to be remotely invoked, through the IMS, and consumed in a different network, along with a prototype implementation and early results. With our protocol services of two distinct service protocol systems can cooperate

    Remote service discovery and control for ubiquitous service environments in next-generation networks

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Remote service discovery and control for ubiquitous service environments in next-generation networks

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Towards a scalable video interactivity solution over the IMS

    Get PDF
    Includes bibliographical references (leaves 72-76).Rapid increase in bandwidth and the interactive and scalability features of the Internet provide a precedent for a converged platform that will support interactive television. Next Generation Network platforms such as the IP Multimedia Subsystem (IMS) support Quality of Service (QoS), fair charging and possible integration with other services for the deployment of IPTV services. IMS architecture supports the use of the Session Initiation Protocol (SIP) for session control and the Real Time Streaming Protocol (RTSP) for media control. This study aims to investigate video interactivity designs over the Internet using an evaluation framework to examine the performance of both SIP and RTSP protocols over the IMS over different access networks. It proposes a Three Layered Video Interactivity Framework (TLVIF) to reduce the video processing load on a server

    Heterogeneous Wireless Networks QoE Framework

    Get PDF
    With the appearance of small cells and the move of mobile networks towards an all-IP 4G network, the convergence of these with Wi-Fi becomes a possibility which at the same time opens the path to achieve what will become 5G connectivity. This thesis describes the evolution of the different mainstream wireless technologies deployed around the world and how they can interact, and provides tools to use this convergence to achieve the foreseen requirements expected in a 5G environment and the ideal user experience. Several topics were identified as needing attention: handover between heterogeneous networks, security of large numbers of small cells connected via a variety of backhaul technologies to the core networks, edge content distribution to improve latency, improvement of the service provided in challenging radio environments and interference between licensed and unlicensed spectrum. Within these topics a contribution was made to improve the current status by analysing the unaddressed issues and coming up with potential improvements that were tested in trials or lab environment. The main contributions from the study have been: 1. A patent in the wireless security domain that reuses the fact that overlapping coverage is and will be available and protects against man in the middle attacks (Section 5.3). 2. A patent in the content distribution domain that manages to reduce the cost to deliver content within a mobile network by looking for the shortest path to the requested content (Section 6.3). 3. Improvements and interoperability test of 802.21 standard which improves the seamlessness of handovers (Section 4.2). 4. 2 infill trials which focus on how to improve the user experience in those challenging conditions (Sections 7.2 and 7.3). 5. An interference study with Wi-Fi 2.4GHz for the newly allocated spectrum for 4G (Section 8.2). This thesis demonstrates some of the improvements required in current wireless networks to evolve towards 5G and achieve the coverage, service, user experience, latency and security requirements expected from the next generation mobile technology

    End to End Inter-domain Quality of Service Provisioning

    Get PDF

    A New SIP Based Services Connecting IMS and DLNA for Future Converged Networks

    No full text
    corecore